Search Results

Now showing 1 - 2 of 2
  • Item
    A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon
    (Amsterdam [u.a.] : Elsevier Science, 2019) Madueño, Leizel; Kecorius, Simonas; Löndahl, Jakob; Müller, Thomas; Pfeifer, Sascha; Haudek, Andrea; Mardoñez, Valeria; Wiedensohler, Alfred
    In this study, we present the development of a mobile system to measure real-world total respiratory tract deposition of inhaled ambient black carbon (BC). Such information can be used to supplement the existing knowledge on air pollution-related health effects, especially in the regions where the use of standard methods and intricate instrumentation is limited. The study is divided in two parts. Firstly, we present the design of portable system and methodology to evaluate the exhaled air BC content. We demonstrate that under real-world conditions, the proposed system exhibit negligible particle losses, and can additionally be used to determine the minute ventilation. Secondly, exemplary experimental data from the system is presented. A feasibility study was conducted in the city of La Paz, Bolivia. In a pilot experiment, we found that the cumulative total respiratory tract deposition dose over 1-h commuting trip would result in approximately 2.6 μg of BC. This is up to 5 times lower than the values obtained from conjectural approach (e.g. using physical parameters from previously reported worksheets). Measured total respiratory tract deposited BC fraction varied from 39% to 48% during walking and commuting inside a micro-bus, respectively. To the best of our knowledge, no studies focusing on experimental determination of real-world deposition dose of BC have been performed in developing regions. This can be especially important because the BC mass concentration is significant and determines a large fraction of particle mass concentration. In this work, we propose a potential method, recommendations, as well as the limitations in establishing an easy and relatively cheap way to estimate the respiratory tract deposition of BC. In this study we present a novel method to measure real-world respiratory tract deposition dose of Black Carbon. Results from a pilot study in La Paz, Bolivia, are presented. © 2019 The Authors
  • Item
    New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project
    (Amsterdam [u.a.] : Elsevier Science, 2016) Kottmeier, Christoph; Agnon, Amotz; Al-Halbouni, Djamil; Alpert, Pinhas; Corsmeier, Ulrich; Dahm, Torsten; Eshel, Adam; Geyer, Stefan; Haas, Michael; Holohan, Eoghan; Kalthoff, Norbert; Kishcha, Pavel; Krawczyk, Charlotte; Lati, Joseph; Laronne, Jonathan B.; Lott, Friederike; Mallast, Ulf; Merz, Ralf; Metzger, Jutta; Mohsen, Ayman; Morin, Efrat; Nied, Manuela; Rödiger, Tino; Salameh, Elias; Sawarieh, Ali; Shannak, Benbella; Siebert, Christian; Weber, Michael
    The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~ 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments.