Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Mo-La2O3 multilayer metallization systems for high temperature surface acoustic wave sensor devices

2019, Menzel, S.B., Seifert, M., Priyadarshi, A., Rane, G.K., Park, E., Oswald, S., Gemming, T.

Developing advanced thin film materials is the key challenge in high-temperature applications of surface acoustic wave sensor devices. One hundred nanometer thick (Mo-La2O3) multilayer systems were fabricated at room temperature on thermally oxidized (100) Si substrates (SiO2/Si) to study the effect of lanthanum oxide on the electrical resistivity of molybdenum thin films and their high-temperature stability. The multilayer systems were deposited by the magnetron sputter deposition of extremely thin (≤1 nm) La interlayers in between adjacent Mo layers. After deposition of each La layer the process was interrupted for 25 to 60 min to oxidize the La using the residual oxygen in the high vacuum of the deposition chamber. The samples were annealed at 800 °C in high vacuum for up to 120 h. In case of a 1 nm thick La interlayer in-between the Mo a continuous layer of La2O3 is formed. For thinner La layers an interlayer between adjacent Mo layers is observed consisting of a (La2O3-Mo) mixed structure of molybdenum and nm-sized lanthanum oxide particles. Measurements show that the (Mo-La2O3) multilayer systems on SiO2/Si substrates are stable at least up to 800 °C for 120 h in high vacuum conditions.

Loading...
Thumbnail Image
Item

Electroless-deposited platinum antennas for wireless surface acousticwave sensors

2019, Brachmann, E., Seifert, M., Neumann, N., Alshwawreh, N., Uhlemann, M., Menzel, S.B., Acker, J., Herold, S., Hoffmann, V., Gemming, T.

In an effort to develop a cost-efficient technology for wireless high-temperature surface acoustic wave sensors, this study presents an evaluation of a combined method that integrates physical vapor deposition with electroless deposition for the fabrication of platinum-based planar antennas. The proposed manufacturing process becomes attractive for narrow, thick, and sparse metallizations for antennas in the MHz to GHz frequency range. In detail, narrow platinum-based lines of a width down to 40 μm were electroless-deposited on γ -Al2O3 substrates using different seed layers. At first, the electrolyte chemistry was optimized to obtain the highest deposition rate. Films with various thickness were prepared and the electrical resistivity, microstructure, and chemical composition in the as-prepared state and after annealing at temperatures up to 1100 °C were evaluated. Using these material parameters, the antenna was simulated with an electromagnetic full-wave simulation tool and then fabricated. The electrical parameters, including the S-parameters of the antenna, were measured. The agreement between the simulated and the realized antenna is then discussed.