Search Results

Now showing 1 - 2 of 2
  • Item
    Degradation Behavior of Silk Nanoparticles - Enzyme Responsiveness
    (Washington, DC : ACS Publ., 2018) Wongpinyochit, Thidarat; Johnston, Blair F.; Seib, F. Philipp
    Silk nanoparticles are viewed as promising vectors for intracellular drug delivery as they can be taken up into cells by endocytosis and trafficked to lysosomes, where lysosomal enzymes and the low pH trigger payload release. However, the subsequent degradation of the silk nanoparticles themselves still requires study. Here, we report the responsiveness of native and PEGylated silk nanoparticles to degradation following exposure to proteolytic enzymes (protease XIV and α-chymotrypsin) and papain, a cysteine protease. Both native and PEGylated silk nanoparticles showed similar degradation behavior over a 20 day exposure period (degradation rate: protease XIV > papain ≫ α-chymotrypsin). Within 1 day, the silk nanoparticles were rapidly degraded by protease XIV, resulting in a ∼50% mass loss, an increase in particle size, and a reduction in the amorphous content of the silk secondary structure. By contrast, 10 days of papain treatment was necessary to observe any significant change in nanoparticle properties, and α-chymotrypsin treatment had no effect on silk nanoparticle characteristics over the 20-day study period. Silk nanoparticles were also exposed ex vivo to mammalian lysosomal enzyme preparations to mimic the complex lysosomal microenvironment. Preliminary results indicated a 45% reduction in the silk nanoparticle size over a 5-day exposure. Overall, the results demonstrate that silk nanoparticles undergo enzymatic degradation, but the extent and kinetics are enzyme-specific.
  • Item
    Unraveling the Impact of High-Order Silk Structures on Molecular Drug Binding and Release Behaviors
    (Washington, DC : ACS, 2019) Wongpinyochit, Thidarat; Vassileiou, Antony D.; Gupta, Sukriti; Mushrif, Samir H.; Johnston, Blair F.; Seib, F. Philipp
    Silk continues to amaze: over the past decade, new research threads have emerged that include the use of silk fibroin for advanced pharmaceutics, including its suitability for drug delivery. Despite this ongoing interest, the details of silk fibroin structures and their subsequent drug interactions at the molecular level remain elusive, primarily because of the difficulties encountered in modeling the silk fibroin molecule. Here, we generated an atomistic silk model containing amorphous and crystalline regions. We then exploited advanced well-tempered metadynamics simulations to generate molecular conformations that we subsequently exposed to classical molecular dynamics simulations to monitor both drug binding and release. Overall, this study demonstrated the importance of the silk fibroin primary sequence, electrostatic interactions, hydrogen bonding, and higher-order conformation in the processes of drug binding and release. © Copyright © 2019 American Chemical Society.