Search Results

Now showing 1 - 10 of 63
Loading...
Thumbnail Image
Item

XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment

2015, Marciniak, A., Despré, V., Barillot, T., Rouzée, A., Galbraith, M.C.E., Klei, J., Yang, C.-H., Smeenk, C.T.L., Loriot, V., Nagaprasad Reddy, S., Tielens, A.G.G.M., Mahapatra, S., Kuleff, A.I., Vrakking, M.J.J., Lépine, F.

Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10−15s) and even attosecond (as) (1 as=10−18 s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation.

Loading...
Thumbnail Image
Item

Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines

2019, Murugesan, Kathiravan, Wei, Zhihong, Chandrashekhar, Vishwas G., Neumann, Helfried, Spannenberg, Anke, Jiao, Haijun, Beller, Matthias, Jagadeesh, Rajenahally V.

The development of earth abundant 3d metal-based catalysts continues to be an important goal of chemical research. In particular, the design of base metal complexes for reductive amination to produce primary amines remains as challenging. Here, we report the combination of cobalt and linear-triphos (bis(2-diphenylphosphinoethyl)phenylphosphine) as the molecularly-defined non-noble metal catalyst for the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds, gaseous ammonia and hydrogen in good to excellent yields. Noteworthy, this cobalt catalyst exhibits high selectivity and as a result the -NH2 moiety is introduced in functionalized and structurally diverse molecules. An inner-sphere mechanism on the basis of the mono-cationic [triphos-CoH]+ complex as active catalyst is proposed and supported with density functional theory computation on the doublet state potential free energy surface and H2 metathesis is found as the rate-determining step.

Loading...
Thumbnail Image
Item

Topological data analysis of contagion maps for examining spreading processes on networks

2015, Taylor, Dane, Klimm, Florian, Harrington, Heather A., Kramár, Miroslav, Mischaikow, Konstantin, Porter, Mason A., Mucha, Peter J.

Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth’s surface; however, in modern contagions long-range edges—for example, due to airline transportation or communication media—allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct ‘contagion maps’ that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

Loading...
Thumbnail Image
Item

Enhancing laser beam performance by interfering intense laser beamlets

2019, Morace, A., Iwata, N., Sentoku, Y., Mima, K., Arikawa, Y., Yogo, A., Andreev, A., Tosaki, S., Vaisseau, X., Abe, Y., Kojima, S., Sakata, S., Hata, M., Lee, S., Matsuo, K., Kamitsukasa, N., Norimatsu, T., Kawanaka, J., Tokita, S., Miyanaga, N., Shiraga, H., Sakawa, Y., Nakai, M., Nishimura, H., Azechi, H., Fujioka, S., Kodama, R.

Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

Loading...
Thumbnail Image
Item

Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers

2017, He, Hongkun, Rahimi, Khosrow, Zhong, Mingjiang, Mourran, Ahmed, Luebke, David R., Nulwala, Hunaid B., Möller, Martin, Matyjaszewski, Krzysztof

Cubosomes are micro- and nanoparticles with a bicontinuous cubic two-phase structure, reported for the self-assembly of low molecular weight surfactants, for example, lipids, but rarely formed by polymers. These objects are characterized by a maximum continuous interface and high interface to volume ratio, which makes them promising candidates for efficient adsorbents and host-guest applications. Here we demonstrate self-assembly to nanoscale cuboidal particles with a bicontinuous cubic structure by amphiphilic poly(ionic liquid) diblock copolymers, poly(acrylic acid)-block-poly(4-vinylbenzyl)-3-butyl imidazolium bis(trifluoromethylsulfonyl)imide, in a mixture of tetrahydrofuran and water under optimized conditions. Structure determining parameters include polymer composition and concentration, temperature, and the variation of the solvent mixture. The formation of the cubosomes can be explained by the hierarchical interactions of the constituent components. The lattice structure of the block copolymers can be transferred to the shape of the particle as it is common for atomic and molecular faceted crystals.

Loading...
Thumbnail Image
Item

Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts

2019, Wu, Lipeng, Annibale, Vincent T., Jiao, Haijun, Brookfield, Adam, Collison, David, Manners, Ian

Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for P–P and P–E (E = O, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25 °C and < 5 min). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing P–O, P–S, or P–N bonds.

Loading...
Thumbnail Image
Item

Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines

2018, Senthamarai, Thirusangumurugan, Murugesan, Kathiravan, Schneidewind, Jacob, Kalevaru, Narayana V., Baumann, Wolfgang, Neumann, Helfried, Kamer, Paul C. J., Beller, Matthias, Jagadeesh, Rajenahally V.

The production of primary benzylic and aliphatic amines, which represent essential feedstocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H2. Key to success for this synthesis is the use of a simple RuCl2(PPh3)3 catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions. Applying this catalyst, −NH2 moiety has been introduced in functionalized and structurally diverse compounds, steroid derivatives and pharmaceuticals. Noteworthy, the synthetic utility of this Ru-catalyzed amination protocol has been demonstrated by upscaling the reactions up to 10 gram-scale syntheses. Furthermore, in situ NMR studies were performed for the identification of active catalytic species. Based on these studies a mechanism for Ru-catalyzed reductive amination is proposed.

Loading...
Thumbnail Image
Item

A low pre-infall mass for the Carina dwarf galaxy from disequilibrium modeling

2015, Ural, Uğur, Wilkinson, Mark I., Read, Justin I., Walker, Matthew G.

Dark matter-only simulations of galaxy formation predict many more subhalos around a Milky Way-like galaxy than the number of observed satellites. Proposed solutions require the satellites to inhabit dark matter halos with masses 109–1010Msun at the time they fell into the Milky Way. Here we use a modelling approach, independent of cosmological simulations, to obtain a pre-infall mass of Msun for one of the Milky Way’s satellites: Carina. This determination of a low halo mass for Carina can be accommodated within the standard model only if galaxy formation becomes stochastic in halos below ∼1010Msun. Otherwise Carina, the eighth most luminous Milky Way dwarf, would be expected to inhabit a significantly more massive halo. The implication of this is that a population of ‘dark dwarfs’ should orbit the Milky Way: halos devoid of stars and yet more massive than many of their visible counterparts.

Loading...
Thumbnail Image
Item

Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4

2019, Zvyagin, S.A., Graf, D., Sakurai, T., Kimura, S., Nojiri, H., Wosnitza, J., Ohta, H., Ono, T., Tanaka, H.

Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.

Loading...
Thumbnail Image
Item

Author Correction: Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols

2018, Brüggemann, Martin, Hayeck, Nathalie, George, Christian

[no abstract available]