Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

2015, Bogdanov, Nikolay A., Katukuri, Vamshi M., Romhányi, Judit, Yushankhai, Viktor, Kataev, Vladislav, Büchner, Bernd, van den Brink, Jeroen, Hozoi, Liviu

A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g

Loading...
Thumbnail Image
Item

Mapping the band structure of GeSbTe phase change alloys around the Fermi level

2018, Kellner, J., Bihlmayer, G., Liebmann, M., Otto, S., Pauly, C., Boschker, J.E., Bragaglia, V., Cecchi, S., Wang, R.N., Deringer, V.L., Küppers, P., Bhaskar, P., Golias, E., Sánchez-Barriga, J., Dronskowski, R., Fauster, T., Rader, O., Calarco, R., Morgenstern, M.

Phase change alloys are used for non-volatile random-access memories exploiting the conductivity contrast between amorphous and metastable, crystalline phase. However, this contrast has never been directly related to the electronic band structure. Here we employ photoelectron spectroscopy to map the relevant bands for metastable, epitaxial GeSbTe films. The constant energy surfaces of the valence band close to the Fermi level are hexagonal tubes with little dispersion perpendicular to the (111) surface. The electron density responsible for transport belongs to the tails of this bulk valence band, which is broadened by disorder, i.e., the Fermi level is 100 meV above the valence band maximum. This result is consistent with transport data of such films in terms of charge carrier density and scattering time. In addition, we find a state in the bulk band gap with linear dispersion, which might be of topological origin.

Loading...
Thumbnail Image
Item

Effect of nematic ordering on electronic structure of FeSe

2016, Fedorov, A., Yaresko, A., Kim, T.K., Kushnirenko, Y., Haubold, E., Wolf, T., Hoesch, M., Grüneis, A., Büchner, B., Borisenko, S.V.

Electronically driven nematic order is often considered as an essential ingredient of high-temperature superconductivity. Its elusive nature in iron-based superconductors resulted in a controversy not only as regards its origin but also as to the degree of its influence on the electronic structure even in the simplest representative material FeSe. Here we utilized angle-resolved photoemission spectroscopy and density functional theory calculations to study the influence of the nematic order on the electronic structure of FeSe and determine its exact energy and momentum scales. Our results strongly suggest that the nematicity in FeSe is electronically driven, we resolve the recent controversy and provide the necessary quantitative experimental basis for a successful theory of superconductivity in iron-based materials which takes into account both, spin-orbit interaction and electronic nematicity.

Loading...
Thumbnail Image
Item

Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2

2016, Güttler, M., Generalov, A., Otrokov, M.M., Kummer, K., Kliemt, K., Fedorov, A., Chikina, A., Danzenbächer, S., Schulz, S., Chulkov, E.V., Koroteev, Yu. M., Caroca-Canales, N., Shi, M., Radovic, M., Geibel, C., Laubschat, C., Dudin, P., Kim, T.K., Hoesch, M., Krellner, C., Vyalikh, D.V.

Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.

Loading...
Thumbnail Image
Item

Multiple Dirac cones at the surface of the topological metal LaBi

2017, Nayak, Jayita, Martinsson, Bengt G., Kumar, Nitesh, Shekhar, Chandra, Singh, Sanjay, Fink, Jörg, Rienks, Emile E.D., Fecher, Gerhard H., Parkin, Stuart S.P., Yan, Binghai, Felser, Claudia

The rare-earth monopnictide LaBi exhibits exotic magneto-transport properties, including an extremely large and anisotropic magnetoresistance. Experimental evidence for topological surface states is still missing although band inversions have been postulated to induce a topological phase in LaBi. In this work, we have revealed the existence of surface states of LaBi through the observation of three Dirac cones: two coexist at the corners and one appears at the centre of the Brillouin zone, by employing angle-resolved photoemission spectroscopy in conjunction with ab initio calculations. The odd number of surface Dirac cones is a direct consequence of the odd number of band inversions in the bulk band structure, thereby proving that LaBi is a topological, compensated semimetal, which is equivalent to a time-reversal invariant topological insulator. Our findings provide insight into the topological surface states of LaBi’s semi-metallicity and related magneto-transport properties.

Loading...
Thumbnail Image
Item

Valence-state reflectometry of complex oxide heterointerfaces

2016, Hamann-Borrero, Jorge E., Macke, Sebastian, Choi, Woo Seok, Sutarto, Ronny, He, Feizhou, Radi, Abdullah, Elfimov, Ilya, Green, Robert J., Haverkort, Maurits W., Zabolotnyy, Volodymyr B., Lee, Ho Nyung, Sawatzky, George A., Hinkov, Vladimir

Emergent phenomena in transition-metal-oxide heterostructures such as interface superconductivity and magnetism have been attributed to electronic reconstruction, which, however, is difficult to detect and characterise. Here we overcome the associated difficulties to simultaneously address the electronic degrees of freedom and distinguish interface from bulk effects by implementing a novel approach to resonant X-ray reflectivity (RXR). Our RXR study of the chemical and valance profiles along the polar (001) direction of a LaCoO3 film on NdGaO3 reveals a pronounced valence-state reconstruction from Co3+ in the bulk to Co2+ at the surface, with an areal density close to 0.5 Co2+ ions per unit cell. An identical film capped with polar (001) LaAlO3 maintains the Co3+ valence over its entire thickness. We interpret this as evidence for electronic reconstruction in the uncapped film, involving the transfer of 0.5e− per unit cell to the subsurface CoO2 layer at its LaO-terminated polar surface.

Loading...
Thumbnail Image
Item

Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance

2016, Niu, Gang, Calka, Pauline, Auf der Maur, Matthias, Santoni, Francesco, Guha, Subhajit, Fraschke, Mirko, Hamoumou, Philippe, Gautier, Brice, Perez, Eduardo, Walczyk, Christian, Wenger, Christian, Di Carlo, Aldo, Alff, Lambert, Schroeder, Thomas

Filament-type HfO2-based RRAM has been considered as one of the most promising candidates for future non-volatile memories. Further improvement of the stability, particularly at the “OFF” state, of such devices is mainly hindered by resistance variation induced by the uncontrolled oxygen vacancies distribution and filament growth in HfO2 films. We report highly stable endurance of TiN/Ti/HfO2/Si-tip RRAM devices using a CMOS compatible nanotip method. Simulations indicate that the nanotip bottom electrode provides a local confinement for the electrical field and ionic current density; thus a nano-confinement for the oxygen vacancy distribution and nano-filament location is created by this approach. Conductive atomic force microscopy measurements confirm that the filaments form only on the nanotip region. Resistance switching by using pulses shows highly stable endurance for both ON and OFF modes, thanks to the geometric confinement of the conductive path and filament only above the nanotip. This nano-engineering approach opens a new pathway to realize forming-free RRAM devices with improved stability and reliability.

Loading...
Thumbnail Image
Item

Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2 CuO2

2016, Johnston, Steve, Monney, Claude, Bisogni, Valentina, Zhou, Ke-Jin, Kraus, Roberto, Behr, Günter, Strocov, Vladimir N., Málek, Jiři, Drechsler, Stefan-Ludwig, Geck, Jochen, Schmitt, Thorsten, van den Brink, Jeroen

Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li2CuO2.

Loading...
Thumbnail Image
Item

The vicinity of hyper-honeycomb β-Li2IrO3 to a three-dimensional Kitaev spin liquid state

2016, Katukuri, Vamshi M., Yadav, Ravi, Hozoi, Liviu, Nishimoto, Satoshi, van den Brink, Jeroen

Due to the combination of a substantial spin-orbit coupling and correlation effects, iridium oxides hold a prominent place in the search for novel quantum states of matter, including, e.g., Kitaev spin liquids and topological Weyl states. We establish the promise of the very recently synthesized hyper-honeycomb iridate β-Li2IrO3 in this regard. A detailed theoretical analysis reveals the presence of large ferromagnetic first-neighbor Kitaev interactions, while a second-neighbor antiferromagnetic Heisenberg exchange drives the ground state from ferro to zigzag order via a three-dimensional Kitaev spin liquid and an incommensurate phase. Experiment puts the system in the latter regime but the Kitaev spin liquid is very close and reachable by a slight modification of the ratio between the second- and first-neighbor couplings, for instance via strain.

Loading...
Thumbnail Image
Item

Transport Properties and Finite Size Effects in β-Ga2O3 Thin Films

2019, Ahrling, Robin, Boy, Johannes, Handwerg, Martin, Chiatti, Olivio, Mitdank, Rüdiger, Wagner, Günter, Galazka, Zbigniew, Fischer, Saskia F.

Thin films of the wide band gap semiconductor β-Ga2O3 have a high potential for applications in transparent electronics and high power devices. However, the role of interfaces remains to be explored. Here, we report on fundamental limits of transport properties in thin films. The conductivities, Hall densities and mobilities in thin homoepitaxially MOVPE grown (100)-orientated β-Ga2O3 films were measured as a function of temperature and film thickness. At room temperature, the electron mobilities ((115 ± 10) cm2/Vs) in thicker films (>150 nm) are comparable to the best of bulk. However, the mobility is strongly reduced by more than two orders of magnitude with decreasing film thickness ((5.5 ± 0.5) cm2/Vs for a 28 nm thin film). We find that the commonly applied classical Fuchs-Sondheimer model does not explain sufficiently the contribution of electron scattering at the film surfaces. Instead, by applying an electron wave model by Bergmann, a contribution to the mobility suppression due to the large de Broglie wavelength in β-Ga2O3 is proposed as a limiting quantum mechanical size effect.