Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols

2018, Brüggemann, Martin, Hayeck, Nathalie, George, Christian

The surface of the oceans acts as a global sink and source for trace gases and aerosol particles. Recent studies suggest that photochemical reactions at this air/water interface produce organic vapors, enhancing particle formation in the atmosphere. However, current model calculations neglect this abiotic source of reactive compounds and account only for biological emissions. Here we show that interfacial photochemistry serves as a major abiotic source of volatile organic compounds (VOCs) on a global scale, capable to compete with emissions from marine biology. Our results indicate global emissions of 46.4-184 Tg C yr-1 of organic vapors from the oceans into the marine atmosphere and a potential contribution to organic aerosol mass of more than 60% over the remote ocean. Moreover, we provide global distributions of VOC formation potentials, which can be used as simple tools for field studies to estimate photochemical VOC emissions depending on location and season.

Loading...
Thumbnail Image
Item

Bayesian Data Analysis for Revealing Causes of the Middle Pleistocene Transition

2019, Mukhin, Dmitry, Gavrilov, Andrey, Loskutov, Evgeny, Kurths, Juergen, Feigin, Alexander

Currently, causes of the middle Pleistocene transition (MPT) – the onset of large-amplitude glacial variability with 100 kyr time scale instead of regular 41 kyr cycles before – are a challenging puzzle in Paleoclimatology. Here we show how a Bayesian data analysis based on machine learning approaches can help to reveal the main mechanisms underlying the Pleistocene variability, which most likely explain proxy records and can be used for testing existing theories. We construct a Bayesian data-driven model from benthic δ18O records (LR04 stack) accounting for the main factors which may potentially impact climate of the Pleistocene: internal climate dynamics, gradual trends, variations of insolation, and millennial variability. In contrast to some theories, we uncover that under long-term trends in climate, the strong glacial cycles have appeared due to internal nonlinear oscillations induced by millennial noise. We find that while the orbital Milankovitch forcing does not matter for the MPT onset, the obliquity oscillation phase-locks the climate cycles through the meridional gradient of insolation.

Loading...
Thumbnail Image
Item

Assessing inter-sectoral climate change risks: The role of ISIMIP

2017, Rosenzweig, Cynthia, Arnell, Nigel W., Ebi, Kristie L., Lotze-Campen, Hermann, Raes, Frank, Rapley, Chris, Smith, Mark Stafford, Cramer, Wolfgang, Frieler, Katja, Reyer, Christopher P.O., Schewe, Jacob, van Vuuren, Detlef, Warszawski, Lila

The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

Loading...
Thumbnail Image
Item

A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle

2018-11-1, Galán, Elena, Llonch, Pol, Villagrá, Arantxa, Levit, Harel, Pinto, Severino, del Prado, Agustín

Introduction Projected temperature rise in the upcoming years due to climate change has increased interest in studying the effects of heat stress in dairy cows. Environmental indices are commonly used for detecting heat stress, but have been used mainly in studies focused on the productivity-related effects of heat stress. The welfare approach involves identifying physiological and behavioural measurements so as to start heat stress mitigation protocols before the appearance of impending severe health or production issues. Therefore, there is growing interest in studying the effects of heat stress on welfare. This systematic review seeks to summarise the animal-based responses to heat stress (physiological and behavioural, excluding productivity) that have been used in scientific literature. Methods Using systematic review guidelines set by PRISMA, research articles were identified, screened and summarised based on inclusion criteria for physiology and behaviour, excluding productivity, for animal-based resilience indicators. 129 published articles were reviewed to determine which animal-based indicators for heat stress were most frequently used in dairy cows. Results The articles considered report at least 212 different animal-based indicators that can be aggregated into body temperature, feeding, physiological response, resting, drinking, grazing and pasture-related behaviour, reactions to heat management and others. The most common physiological animal-based indicators are rectal temperature, respiration rate and dry matter intake, while the most common behavioural indicators are time spent lying, standing and feeding. Conclusion Although body temperature and respiration rate are the animal-based indicators most frequently used to assess heat stress in dairy cattle, when choosing an animal-based indicator for detecting heat stress using scientific literature to establish thresholds, characteristics that influence the scale of the response and the definition of heat stress must be taken into account, e.g. breed, lactation stage, milk yield, system type, climate region, bedding type, diet and cooling management strategies. © 2018 Galan∗E.∗Elena et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.