Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Characteristics of the Quiet-Time Hot Spot GravityWaves Observed by GOCE Over the Southern Andes on 5 July 2010

2019, Vadas, Sharon L., Xu, Shuang, Yue, Jia, Bossert, Katrina, Becker, Erich, Baumgarten, Gerd

We analyze quiet-time data from the Gravity Field and Ocean Circulation Explorer satellite as it overpassed the Southern Andes at z≃275 km on 5 July 2010 at 23 UT. We extract the 20 largest traveling atmospheric disturbances from the density perturbations and cross-track winds using Fourier analysis. Using gravity wave (GW) dissipative theory that includes realistic molecular viscosity, we search parameter space to determine which hot spot traveling atmospheric disturbances are GWs. This results in the identification of 17 GWs having horizontal wavelengths λH = 170–1,850 km, intrinsic periods τIr = 11–54 min, intrinsic horizontal phase speeds cIH = 245–630 m/s, and density perturbations (Formula presented.) 0.03–7%. We unambiguously determine the propagation direction for 11 of these GWs and find that most had large meridional components to their propagation directions. Using reverse ray tracing, we find that 10 of these GWs must have been created in the mesosphere or thermosphere. We show that mountain waves (MWs) were observed in the stratosphere earlier that day and that these MWs saturated at z∼ 70–75 km from convective instability. We suggest that these 10 Gravity Field and Ocean Circulation Explorer hot spot GWs are likely tertiary (or higher-order) GWs created from the dissipation of secondary GWs excited by the local body forces created from MW breaking. We suggest that the other GW is likely a secondary or tertiary (or higher-order) GW. This study strongly suggests that the hot spot GWs over the Southern Andes in the quiet-time middle winter thermosphere cannot be successfully modeled by conventional global circulation models where GWs are parameterized and launched in the troposphere or stratosphere. ©2019. The Authors.

Loading...
Thumbnail Image
Item

The stratorotational instability of Taylor-Couette flows with moderate Reynolds numbers

2017, Rüdiger, G., Seelig, T., Schultz, M., Gellert, M., Egbers, C., Harlander, U.

In view of new experimental data the instability against adiabatic nonaxisymmetric perturbations of a Taylor-Couette flow with an axial density stratification is considered in dependence of the Reynolds number (Re) of rotation and the Brunt-Väisälä number (Rn) of the stratification. The flows at and beyond the Rayleigh limit become unstable between a lower and an upper Reynolds number (for fixed Rn). The rotation can thus be too slow or too fast for the stratorotational instability. The upper Reynolds number above which the instability decays, has its maximum value for the potential flow (driven by cylinders rotating according to the Rayleigh limit) and decreases strongly for flatter rotation profiles finally leaving only isolated islands of instability in the (Rn/Re) map. The maximal possible rotation ratio μmax only slightly exceeds the shear value of the quasi-uniform flow with Uφ≃const. Along and between the lines of neutral stability the wave numbers of the instability patterns for all rotation laws beyond the Rayleigh limit are mainly determined by the Froude number Fr which is defined by the ratio between Re and Rn. The cells are highly prolate for Fr > 1 so that measurements for too high Reynolds numbers become difficult for axially bounded containers. The instability patterns migrate azimuthally slightly faster than the outer cylinder rotates.