Search Results

Now showing 1 - 5 of 5
  • Item
    Development of a model for ultra-precise surface machining of N-BK7® using microwave-driven reactive plasma jet machining
    (Hoboken, NJ : Wiley Interscience, 2019) Kazemi, Faezeh; Boehm, Georg; Arnold, Thomas
    In this paper, extensive studies are conducted as key to overcoming several challenging limitations in applying fluorine-based reactive plasma jet machining (PJM) to surface machining of N-BK7®, particularly regarding the manufacture of freeform optical elements. The chemical composition and lateral distributions of the residual layer are evaluated by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive X-ray spectroscopy analysis aiming at clarifying the exact chemical kinetics between plasma generated active particles and the N-BK7 surface atoms. Subsequently, a model is developed by performing static etchings to consider the time-varying nonlinearity of the material removal rate and estimate the local etching rate function. Finally, the derived model is extended into the dynamic machining process, and the outcomes are compared with the experimental results.
  • Item
    Competition between proton transfer and intermolecular Coulombic decay in water
    ([London] : Nature Publishing Group UK, 2018) Richter, Clemens; Hollas, Daniel; Saak, Clara-Magdalena; Förstel, Marko; Miteva, Tsveta; Mucke, Melanie; Björneholm, Olle; Sisourat, Nicolas; Slavíček, Petr; Hergenhahn, Uwe
    Intermolecular Coulombic decay (ICD) is a ubiquitous relaxation channel of electronically excited states in weakly bound systems, ranging from dimers to liquids. As it is driven by electron correlation, it was assumed that it will dominate over more established energy loss mechanisms, for example fluorescence. Here, we use electron–electron coincidence spectroscopy to determine the efficiency of the ICD process after 2a1 ionization in water clusters. We show that this efficiency is surprisingly low for small water clusters and that it gradually increases to 40–50% for clusters with hundreds of water units. Ab initio molecular dynamics simulations reveal that proton transfer between neighboring water molecules proceeds on the same timescale as ICD and leads to a configuration in which the ICD channel is closed. This conclusion is further supported by experimental results from deuterated water. Combining experiment and theory, we infer an intrinsic ICD lifetime of 12–52 fs for small water clusters.
  • Item
    Charge transfer to ground-state ions produces free electrons
    ([London] : Nature Publishing Group UK, 2017) You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A.I.; Cederbaum, L.S.; Ueda, K
    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.
  • Item
    Automatic spike correction using UNIFIT 2020
    (Chichester [u.a.] : Wiley, 2019) Hesse, Ronald; Bundesmann, Carsten; Denecke, Reinhard
    The improvement of the software UNIFIT 2020 from an analysis processing software for photoelectron spectroscopy (XPS) only to a powerful tool for XPS, Auger electron spectroscopy (AES), X-ray absorption spectroscopy (XAS), and Raman spectroscopy requires new additional programme routines. Particularly, the implementation of the analysis of Raman spectra needs a well-working automatic spike correction. The application of the modified discrete Laplace operator method allows for a perfect localization and correction of the spikes and finally a successful peak fit of the spectra. The theoretical basis is described. Test spectra allow for the evaluation of the presented method. A comparison of the original and spike-corrected real measurements demonstrates the high quality of the method used.
  • Item
    Programing stimuli-responsiveness of gelatin with electron beams: Basic effects and development of a hydration-controlled biocompatible demonstrator
    (London : Nature Publishing Group, 2017) Riedel, Stefanie; Heyart, Benedikt; Apel, Katharina S.; Mayr, Stefan G.
    Biomimetic materials with programmable stimuli responsiveness constitute a highly attractive material class for building bioactuators, sensors and active control elements in future biomedical applications. With this background, we demonstrate how energetic electron beams can be utilized to construct tailored stimuli responsive actuators for biomedical applications. Composed of collagen-derived gelatin, they reveal a mechanical response to hydration and changes in pH-value and ion concentration, while maintaining their excellent biocompatibility and biodegradability. While this is explicitly demonstrated by systematic characterizing an electron-beam synthesized gelatin-based actuator of cantilever geometry, the underlying materials processes are also discussed, based on the fundamental physical and chemical principles. When applied within classical electron beam lithography systems, these findings pave the way for a novel class of highly versatile integrated bioactuators from micro-to macroscales.