Search Results

Now showing 1 - 5 of 5
  • Item
    A High-Voltage, Dendrite-Free, and Durable Zn–Graphite Battery
    (Weinheim : Wiley-VCH, 2019) Wang, Gang; Kohn, Benjamin; Scheler, Ulrich; Wang, Faxing; Oswald, Steffen; Löffler, Markus; Tan, Deming; Zhang, Panpan; Zhang, Jian; Feng, Xinliang
    The intrinsic advantages of metallic Zn, like high theoretical capacity (820 mAh g−1), high abundance, low toxicity, and high safety have driven the recent booming development of rechargeable Zn batteries. However, the lack of high-voltage electrolyte and cathode materials restricts the cell voltage mostly to below 2 V. Moreover, dendrite formation and the poor rechargeability of the Zn anode hinder the long-term operation of Zn batteries. Here a high-voltage and durable Zn–graphite battery, which is enabled by a LiPF6-containing hybrid electrolyte, is reported. The presence of LiPF6 efficiently suppresses the anodic oxidation of Zn electrolyte and leads to a super-wide electrochemical stability window of 4 V (vs Zn/Zn2+). Both dendrite-free Zn plating/stripping and reversible dual-anion intercalation into the graphite cathode are realized in the hybrid electrolyte. The resultant Zn–graphite battery performs stably at a high voltage of 2.8 V with a record midpoint discharge voltage of 2.2 V. After 2000 cycles at a high charge–discharge rate, high capacity retention of 97.5% is achieved with ≈100% Coulombic efficiency. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    The Biomedical Use of Silk: Past, Present, Future
    (Weinheim : Wiley-VCH, 2019) Holland, Chris; Numata, Keiji; Rnjak-Kovacina, Jelena; Seib, F. Philipp
    Humans have long appreciated silk for its lustrous appeal and remarkable physical properties, yet as the mysteries of silk are unraveled, it becomes clear that this outstanding biopolymer is more than a high-tech fiber. This progress report provides a critical but detailed insight into the biomedical use of silk. This journey begins with a historical perspective of silk and its uses, including the long-standing desire to reverse engineer silk. Selected silk structure–function relationships are then examined to appreciate past and current silk challenges. From this, biocompatibility and biodegradation are reviewed with a specific focus of silk performance in humans. The current clinical uses of silk (e.g., sutures, surgical meshes, and fabrics) are discussed, as well as clinical trials (e.g., wound healing, tissue engineering) and emerging biomedical applications of silk across selected formats, such as silk solution, films, scaffolds, electrospun materials, hydrogels, and particles. The journey finishes with a look at the roadmap of next-generation recombinant silks, especially the development pipeline of this new industry for clinical use. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites
    (Weinheim : Wiley-VCH, 2017) Pawar, Shital Patangrao; Gandi, Mounika; Arief, Injamamul; Krause, Beate; Pötschke, Petra; Bose, Suryasarathi
    Herein, we report the development of soft polymeric composites containing multiwall carbon nanotubes (MWNTs, 1–3 wt%) and graphene derivatives doped with nickel ferrite nanoparticles (rGO@NF, 10 wt%) as lightweight microwave absorbers. The soft nanocomposites were designed using melt-mixed blends of varying compositions of PC (polycarbonate) and SAN (poly styrene acrylonitrile) by compartmentalized functional nanoparticles in one of the components of the blend (here PC). Maximum attenuation of the incoming electromagnetic (EM) radiation mainly through absorption was achieved. The hetero-dielectric media at microscopic length scale in the PC component provided large interfaces which facilitated multiple scattering thereby attenuating the incoming EM radiation. This strategy of positioning the functional nanoparticles in one of the components in the blends resulted in significantly enhanced shielding effectiveness (SE), at any given concentration of MWNTs, in contrast to PC based composites. This enhancement in SE was realized in the special morphology of the bicomponent PC/SAN=60/40 wt% blends where both the components are continuous. The enhanced SE in co-continuous blends is due to combined effect of enhanced electrical conductivity (more precisely due to interconnected network of the nanoparticles) and the presence of a hetero-dielectric media generating large scattering interfaces. For instance, the PC/SAN (60/40 wt%) co-continuous blend containing 3 wt% MWNTs and 10 wt% rGO@NF manifested in a total shielding effectiveness (SET) of −32.3 dB (i. e. more than 99.9 % attenuation of incoming EM radiation) mainly through absorption.
  • Item
    Polymerizing Like Mussels Do: Toward Synthetic Mussel Foot Proteins and Resistant Glues
    (Weinheim : Wiley-VCH, 2018) Horsch, Justus; Wilke, Patrick; Pretzler, Matthias; Seuss, Maximilian; Melnyk, Inga; Remmler, Dario; Fery, Andreas; Rompel, Annette; Börner, Hans G.
    A novel strategy to generate adhesive protein analogues by enzyme-induced polymerization of peptides is reported. Peptide polymerization relies on tyrosinase oxidation of tyrosine residues to Dopaquinones, which rapidly form cysteinyldopa-moieties with free thiols from cysteine residues, thereby linking unimers and generating adhesive polymers. The resulting artificial protein analogues show strong adsorption to different surfaces, even resisting hypersaline conditions. Remarkable adhesion energies of up to 10.9 mJ m−2 are found in single adhesion events and average values are superior to those reported for mussel foot proteins that constitute the gluing interfaces.
  • Item
    Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles
    (Weinheim : Wiley-VCH, 2017) Saborano, Raquel; Wongpinyochit, Thidarat; Totten, John D.; Johnston, Blair F.; Seib, F. Philipp; Duarte, Iola F.
    Monitoring macrophage metabolism in response to nanoparticle exposure provides new insights into biological outcomes, such as inflammation or toxicity, and supports the design of tailored nanomedicines. This paper describes the metabolic signature of macrophages exposed to nanoparticles ranging in diameter from 100 to 125 nm and made from silk, poly(lactic-co-glycolic acid) or silica. Nanoparticles of this size and type are currently at various stages of preclinical and clinical development for drug delivery applications. 1H NMR analysis of cell extracts and culture media is used to quantify the changes in the intracellular and extracellular metabolomes of macrophages in response to nanoparticle exposure. Increased glycolytic activity, an altered tricarboxylic acid cycle, and reduced ATP generation are consistent with a proinflammatory phenotype. Furthermore, amino acids possibly arising from autophagy, the creatine kinase/phosphocreatine system, and a few osmolytes and antioxidants emerge as important players in the metabolic reprogramming of macrophages exposed to nanoparticles. This metabolic signature is a common response to all nanoparticles tested; however, the direction and magnitude of some variations are clearly nanoparticle specific, indicating material-induced biological specificity. Overall, metabolic reprogramming of macrophages can be achieved with nanoparticle treatments, modulated through the choice of the material, and monitored using 1H NMR metabolomics.