Search Results

Now showing 1 - 10 of 23
  • Item
    Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance
    (Washington, DC : Soc., 2018) Kuttner, Christian; Mayer, Martin; Dulle, Martin; Moscoso, Ana; López-Romero, Juan Manuel; Förster, Stephan; Fery, Andreas; Pérez-Juste, Jorge; Contreras-Cáceres, Rafael
    We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV–vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10–8–10–9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.
  • Item
    Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network
    (Weinheim : Wiley-VCH, 2019) Xu, Yong; Patsis, Panagiotis A.; Hauser, Sandra; Voigt, Dagmar; Rothe, Rebecca; Günther, Markus; Cui, Meiying; Yang, Xuegeng; Wieduwild, Robert; Eckert, Kerstin; Neinhuis, Christoph; Akbar, Teuku Fawzul; Minev, Ivan R.; Pietzsch, Jens; Zhang, Yixin
    Synthetic conductive biopolymers have gained increasing interest in tissue engineering, as they can provide a chemically defined electroconductive and biomimetic microenvironment for cells. In addition to low cytotoxicity and high biocompatibility, injectability and adhesiveness are important for many biomedical applications but have proven to be very challenging. Recent results show that fascinating material properties can be realized with a bioinspired hybrid network, especially through the synergy between irreversible covalent crosslinking and reversible noncovalent self-assembly. Herein, a polysaccharide-based conductive hydrogel crosslinked through noncovalent and reversible covalent reactions is reported. The hybrid material exhibits rheological properties associated with dynamic networks such as self-healing and stress relaxation. Moreover, through fine-tuning the network dynamics by varying covalent/noncovalent crosslinking content and incorporating electroconductive polymers, the resulting materials exhibit electroconductivity and reliable adhesive strength, at a similar range to that of clinically used fibrin glue. The conductive soft adhesives exhibit high cytocompatibility in 2D/3D cell cultures and can promote myogenic differentiation of myoblast cells. The heparin-containing electroconductive adhesive shows high biocompatibility in immunocompetent mice, both for topical application and as injectable materials. The materials could have utilities in many biomedical applications, especially in the area of cardiovascular diseases and wound dressing.
  • Item
    Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane
    (Weinheim : Wiley-VCH, 2019) Gumz, Hannes; Boye, Susanne; Iyisan, Banu; Krönert, Vera; Formanek, Petr; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin—gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase—with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
  • Item
    Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures
    (Amsterdam [u.a.] : Elsevier Science, 2019) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the focus on the use as leakage detectors, the vapor sensing behavior of conductive polymer composites (CPCs) based on polycarbonate/polystyrene/multi-walled carbon nanotube (PC/PS/MWCNT) blends with different blend ratios was studied as well as their morphological and electrical properties. In the melt mixed blend composites, the MWCNTs are preferentially localized in PC. At the PC/PS ratio of 70/30 wt%, the composites showed a sea-island structure, while for blends containing 40 wt% or 50 wt% PS co-continuous structures were developed resulting in a reduction in the MWCNT percolation threshold. The saturated vapors of the selected solvents have good interactions to PS but different interactions to PC. At 0.75 wt% MWCNT, sea-island CPCs showed high relative resistance change (Rrel) but poor reversibility towards moderate vapors like ethyl acetate and toluene, while CPCs with co-continuous structure exhibited lower Rrel and better reversibility. All CPCs showed poor reversibility towards vapor of the good solvent dichloromethane due to strong interactions between polymers and vapor. In the vapor of the poor solvent cyclohexane, CPCs with higher PS content showed increased Rrel. After extraction of the PS component by cyclohexane, the sensing response was decreased and the Rrel of the co-continuous blend even reached negative values.
  • Item
    The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel
    (Basel : MDPI, 2018) Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Boldt, Regine; Schwarz, Simona
    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity.
  • Item
    Enhanced Interfacial Shear Strength and Critical Energy Release Rate in Single Glass Fiber-Crosslinked Polypropylene Model Microcomposites
    (Basel : MDPI, 2018) Gohs, Uwe; Mueller, Michael Thomas; Zschech, Carsten; Zhandarov, Serge
    Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.
  • Item
    Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS)
    (Basel : MDPI, 2017) Sobierajska, Ewelina; Konopka, Malgorzata; Janaszewska, Anna; Piorecka, Kinga; Blauz, Andrzej; Klajnert-Maculewicz, Barbara; Stanczyk, Maciej; Stanczyk, Wlodzimierz A.
    Polyhedral oligomeric silsesquioxane (POSS), bearing eight 3-chloroammoniumpropyl substituents, was studied as a potential nanocarrier in co-delivery systems with doxorubicin (DOX). The toxicity of doxorubicin and POSS:DOX complexes at four different molar ratios (1:1; 1:2, 1:4, 1:8) towards microvascular endothelial cells (HMEC-1), breast cancer cells (MCF-7), and human cervical cancer endothelial cells (HeLa) was determined. The rate of penetration of the components into the cells, their cellular localization and the hydrodynamic diameter of the complexes was also determined. A cytotoxicity profile of POSS:DOX complexes indicated that the POSS:DOX system at the molar ratio of 1:8 was more effective than free DOX. Confocal images showed that DOX co-delivery with POSS allowed for more effective penetration of doxorubicin through the cell membrane. Taking all the results into account, it can be claimed that the polyhedral oligomeric silsesquioxane (T8-POSS) is a promising, complex nanocarrier for doxorubicin delivery.
  • Item
    Further Enhancement of Mechanical Properties of Conducting Rubber Composites Based on Multiwalled Carbon Nanotubes and Nitrile Rubber by Solvent Treatment
    (Basel : MDPI, 2018) Keinänen, Pasi; Das, Amit; Vuorinen, Jyrki
    Post-treatment removal of dispersion agents from carbon nanotube/rubber composites can greatly enhance the mechanical properties by increasing the filler–matrix interaction. In this study, multiwall carbon nanotubes (MWNT) were dispersed in water by sonication and nonionic surfactant, octyl-phenol-ethoxylate was used as a dispersion agent. The dispersed MWNTs were incorporated in thermo-reactive acrylonitrile butadiene rubber (NBR) latex and nanocomposite films were prepared by solution casting. As a post-treatment, the surfactant was removed with acetone and films were dried in air. Dispersion quality of the colloid before casting was determined, and mechanical, electrical and thermal properties of the composites before and after the acetone post-treatment were studied. It was found that removal of dispersion agent increased the storage modulus of films between 160–300% in all samples. Relative enhancement was greater in samples with better dispersion quality, whereas thermal conductivity changed more in samples with smaller dispersion quality values. Electrical properties were not notably affected.
  • Item
    A new way of toughening of thermoset by dual-cured thermoplastic/thermosetting blend
    (Basel : MDPI, 2019) Khatiwada, Shankar P.; Gohs, Uwe; Lach, Ralf; Heinrich, Gert; Adhikari, Rameshwar
    The work aims at establishing the optimum conditions for dual thermal and electron beam curing of thermosetting systems modified by styrene/butadiene (SB)-based triblock copolymers in order to develop transparent and toughened materials. The work also investigates the effects of curing procedures on the ultimate phase morphology and mechanical properties of these thermoset-SB copolymer blends. It was found that at least 46 mol% of the epoxidation degree of the SB copolymer was needed to enable the miscibility of the modified block copolymer into the epoxy resin. Hence, an electron beam curing dose of ~50 kGy was needed to ensure the formation of micro- and nanostructured transparent blends. The micro- and nanophase-separated thermosets obtained were analyzed by optical as well as scanning and transmission electron microscopy. The mechanical properties of the blends were enhanced as shown by their impact strengths, indentation, hardness, and fracture toughness analyses, whereby the toughness values were found to mainly depend on the dose. Thus, we have developed a new route for designing dual-cured toughened micro- and nanostructured transparent epoxy thermosets with enhanced fracture toughness. © 2019 by the authors.
  • Item
    Cononsolvency Transition of Polymer Brushes: A Combined Experimental and Theoretical Study
    (Basel : MDPI, 2018) Yong, Huaisong; Rauch, Sebastian; Eichhorn, Klaus-Jochen; Uhlmann, Petra; Fery, Andreas; Sommer, Jens-Uwe
    In this study, the cononsolvency transition of poly(N-isopropylacrylamide) (PNiPAAm) brushes in aqueous ethanol mixtures was studied by using Vis-spectroscopic ellipsometry (SE) discussed in conjunction with the adsorption-attraction model. We proved that the cononsolvency transition of PNiPAAm brushes showed features of a volume phase transition, such as a sharp collapse, reaching a maximum decrease in thickness for a very narrow ethanol volume composition range of 15% to 17%. These observations are in agreement with the recently published preferential adsorption model of the cononsolvency effect.