Search Results

Now showing 1 - 5 of 5
  • Item
    Intermolecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt)
    (Chester : International Union of Crystallography, 2019) Joksch, M.; Spannenberg, A.; Beweries, T.
    In the crystal structure of the isostructural title compounds, namely {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridopalladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridoplatinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an interaction of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.
  • Item
    Unraveling the H2 Promotional Effect on Palladium-Catalyzed CO Oxidation Using a Combination of Temporally and Spatially Resolved Investigations
    (Washington, DC : ACS, 2018) Stewart, Caomhán; Gibson, Emma K.; Morgan, Kevin; Cibin, Giannantonio; Dent, Andrew J.; Hardacre, Christopher; Kondratenko, Evgenii V.; Kondratenko, Vita A.; McManus, Colin; Rogers, Scott; Stere, Cristina E.; Chansai, Sarayute; Wang, Yi-Chi; Haigh, Sarah J.; Wells, Peter P.; Goguet, Alexandre
    The promotional effect of H2 on the oxidation of CO is of topical interest, and there is debate over whether this promotion is due to either thermal or chemical effects. As yet there is no definitive consensus in the literature. Combining spatially resolved mass spectrometry and X-ray absorption spectroscopy (XAS), we observe a specific environment of the active catalyst during CO oxidation, having the same specific local coordination of the Pd in both the absence and presence of H2. In combination with Temporal Analysis of Products (TAP), performed under isothermal conditions, a mechanistic insight into the promotional effect of H2 was found, providing clear evidence of nonthermal effects in the hydrogen-promoted oxidation of carbon monoxide. We have identified that H2 promotes the Langmuir-Hinshelwood mechanism, and we propose this is linked to the increased interaction of O with the Pd surface in the presence of H2. This combination of spatially resolved MS and XAS and TAP studies has provided previously unobserved insights into the nature of this promotional effect.
  • Item
    Rice husk derived porous silica as support for pd and CeO2 for low temperature catalytic methane combustion
    (Basel : MDPI, 2019) Liu, Dongjing; Seeburg, Dominik; Kreft, Stefanie; Bindig, René; Hartmann, Ingo; Schneider, Denise; Enke, Dirk; Wohlrab, Sebastian
    The separation of Pd and CeO2 on the inner surface of controlled porous glass (CPG, obtained from phase-separated borosilicate glass after extraction) yields long-term stable and highly active methane combustion catalysts. However, the limited availability of the CPG makes such catalysts highly expensive and limits their applicability. In this work, porous silica obtained from acid leached rice husks after calcination (RHS) was used as a sustainable, cheap and broadly available substitute for the above mentioned CPG. RHS-supported Pd-CeO2 with separated CeO2 clusters and Pd nanoparticles was fabricated via subsequent impregnation/calcination of molten cerium nitrate and different amounts of palladium nitrate solution. The Pd/CeO2/RHS catalysts were employed for the catalytic methane combustion in the temperature range of 150–500◦C under methane lean conditions (1000 ppm) in a simulated off-gas consisting of 9.0 vol% O2, and 5.5 vol% CO2 balanced with N2. Additionally, tests with 10.5 vol% H2O as co-feed were carried out. The results revealed that the RHS-supported catalysts reached the performance of the cost intensive benchmark catalyst based on CPG. The incorporation of Pd-CeO2 into RHS additionally improved water-resistance compared to solely Pd/CeO2 lowering the required temperature for methane combustion in presence of 10.5 vol% H2O to values significantly below 500◦C (T90 = 425◦C). © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Cooperative catalytic methoxycarbonylation of alkenes: Uncovering the role of palladium complexes with hemilabile ligands
    (Cambridge : RSC, 2018) Dong, Kaiwu; Sang, Rui; Wei, Zhihong; Liu, Jie; Dühren, Ricarda; Spannenberg, Anke; Jiao, Haijun; Neumann, Helfried; Jackstell, Ralf; Franke, Robert; Beller, Matthias
    Mechanistic studies of the catalyst [Pd2(dba)3/1,1′-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal-ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step.
  • Item
    Palladium-catalyzed synthesis and nucleotide pyrophosphatase inhibition of benzo[4,5]furo[3,2-b]indoles
    (Frankfurt, Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2019) Do, Hoang Huy; Ullah, Saif; Villinger, Alexander; Lecka, Joanna; Sévigny, Jean; Ehlers, Peter; Iqbal, Jamshed; Langer, Peter
    A two-step palladium-catalyzed procedure based on Suzuki–Miyaura cross coupling, followed by a double Buchwald–Hartwig reaction, allows for the synthesis of pharmaceutically relevant benzo[4,5]furo[3,2-b]indoles in moderate to very good yield. The synthesized compounds have been analyzed with regard to their inhibitory activity (IC50) of nucleotide pyrophosphatases h-NPP1 and h-NPP3. The activity lies in the nanomolar range. The results were rationalized based on docking studies. © 2019 Do et al.