Search Results

Now showing 1 - 8 of 8
  • Item
    Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites
    (Weinheim : Wiley-VCH, 2017) Pawar, Shital Patangrao; Gandi, Mounika; Arief, Injamamul; Krause, Beate; Pötschke, Petra; Bose, Suryasarathi
    Herein, we report the development of soft polymeric composites containing multiwall carbon nanotubes (MWNTs, 1–3 wt%) and graphene derivatives doped with nickel ferrite nanoparticles (rGO@NF, 10 wt%) as lightweight microwave absorbers. The soft nanocomposites were designed using melt-mixed blends of varying compositions of PC (polycarbonate) and SAN (poly styrene acrylonitrile) by compartmentalized functional nanoparticles in one of the components of the blend (here PC). Maximum attenuation of the incoming electromagnetic (EM) radiation mainly through absorption was achieved. The hetero-dielectric media at microscopic length scale in the PC component provided large interfaces which facilitated multiple scattering thereby attenuating the incoming EM radiation. This strategy of positioning the functional nanoparticles in one of the components in the blends resulted in significantly enhanced shielding effectiveness (SE), at any given concentration of MWNTs, in contrast to PC based composites. This enhancement in SE was realized in the special morphology of the bicomponent PC/SAN=60/40 wt% blends where both the components are continuous. The enhanced SE in co-continuous blends is due to combined effect of enhanced electrical conductivity (more precisely due to interconnected network of the nanoparticles) and the presence of a hetero-dielectric media generating large scattering interfaces. For instance, the PC/SAN (60/40 wt%) co-continuous blend containing 3 wt% MWNTs and 10 wt% rGO@NF manifested in a total shielding effectiveness (SET) of −32.3 dB (i. e. more than 99.9 % attenuation of incoming EM radiation) mainly through absorption.
  • Item
    Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio
    (Hoboken, NJ [u.a.] : Wiley, 2018) Liebscher, Marco; Domurath, Jan; Krause, Beate; Saphiannikova, Marina; Heinrich, Gert; Pötschke, Petra
    Electrical and melt rheological properties of melt-mixed polycarbonate (PC) and co-continuous PC/poly(styrene–acrylonitrile) (SAN) blends with carbon nanotubes (CNTs) are investigated. Using two sets of mixing parameters, different states of filler dispersion are obtained. With increasing CNT dispersion, an increase in electrical resistivity near the percolation threshold of PC–CNT composites and (PC + CNT)/SAN blends is observed. This suggests that the higher mixing energies required for better dispersion also result in a more severe reduction of the CNT aspect ratio; this effect was proven by CNT length measurements. Melt rheological studies show higher reinforcing effects for composites with worse dispersion. The Eilers equation, describing the melt viscosity as function of filler content, was used to fit the data and to obtain information about an apparent aspect ratio change, which was in accordance with measured CNT length reduction. Such fitting could be also transferred to the blends and serves for a qualitatively based discussion. © 2017 Wiley Periodicals
  • Item
    Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol
    (Oxford : Elsevier Science, 2017) Luo, Jinji; Cerretti, Giacomo; Krause, Beate; Zhang, Long; Otto, Thomas; Jenschke, Wolfgang; Ullrich, Mathias; Tremel, Wolfgang; Voit, Brigitte; Pötschke, Petra
    The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two composites were prepared: P-type polymer/CNT composites with high S (up to 45 μV/K), and n-type composites (with S up to −56 μV/K) through the addition of PEG. Two prototypes with 4 and 49 thermocouples of these p- and n-type composites were fabricated, and delivered an output voltage of 21 mV and 110 mV, respectively, at a temperature gradient of 70 K.
  • Item
    Comparative study of singlewalled, multiwalled, and branched carbon nanotubes melt mixed in different thermoplastic matrices
    (Oxford : Elsevier Science, 2018) Krause, Beate; Barbier, Carine; Kunz, Karina; Pötschke, Petra
    In this contribution, three different types of CNTs, namely single-walled (SWCNT), multi-walled (MWCNT) and branched MWCNTs were melt mixed in amounts of 0.1–10 wt.-% in polypropylene (PP), polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) using a small-scale microcompounder. The filler dispersion of compression-moulded samples was characterized using light and electron microscopy, and the electrical and thermal properties were measured. The lowest electrical percolation thresholds were found for composites of PP/SWCNT, PP/branched MWCNT and PC/branched MWCNT, which percolated already at <0.1 wt.-% CNT loading. Low values of electrical volume resistivity of about 3 Ohm·cm (PVDF), 7 Ohm·cm (PP) and 2 Ohm·cm (PC) could be reached when loading with 2 wt.-% branched MWCNT. A homogeneous dispersion in the macro- and microlevel was observed especially for composites containing branched MWCNTs. For all CNT types, a matrix nucleation effect was found in PP and PVDF using differential scanning calorimetry.
  • Item
    Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications
    (Manchester, NH : Wiley, 2019) Naji, Ahmed; Krause, Beate; Pötschke, Petra; Ameli, Amir
    Conductive polymer composites (CPCs) with high electrical and thermal conductivities are demanded for bipolar plates of fuel cells. In this work, CPCs of polycarbonate (PC) filled with carbon nanotube (CNT), carbon fiber (CF), graphite (G), and their double and triple hybrids were prepared using solution casting method followed by compression molding. The results showed that the electrical percolation thresholds for the PC-CNT and PC-CF were ~1 wt% and ~10 wt%, respectively, while no clear threshold was found for PC-G composites. Addition of 3–5 wt% CNT improved the electrical conductivity of PC-CF and PC-G systems up to 6 orders of magnitude and enhanced the thermal conductivity as much as 65%. The results of triple hybrid CPCs (with constant loading of 63 wt%) indicated that the combination of highest electrical and thermal conductivities is achieved when the CF and CNT loadings were near their percolation thresholds. Therefore, a triple filler system of 3 wt% CNT, 10 wt% CF, and 50 wt% G resulted in a composite with the through-plane and in-plane electrical conductivity, and thermal conductivity values of 12.8 S/cm, 8.3 S/cm, and 1.7 W/m•K, respectively. The results offer a combination of properties surpassing the existing values and suitable for high-conductivity applications such as bipolar plates. POLYM. COMPOS., 40:3189–3198, 2019. © 2018 Society of Plastics Engineers.
  • Item
    On wireless channel parameters for key generation in industrial environments
    (New York, NY : IEEE, 2017) Kreiser, Dan; Dyka, Zoya; Kornemann, Stephan; Wittke, Christian; Kabin, Ievgen; Stecklina, Oliver; Langendoerfer, Peter
    The advent of industry 4.0 with its idea of individualized mass production will significantly increase the demand for more flexibility on the production floor. Wireless communication provides this type of flexibility but puts the automation system at risk as potential attackers now can eavesdrop or even manipulate the messages exchanged even without getting access to the premises of the victim. Cryptographic means can prevent such attacks if applied properly. One of their core components is the distribution of keys. The generation of keys from channel parameters seems to be a promising approach in comparison to classical approaches based on public key cryptography as it avoids computing intense operations for exchanging keys. In this paper we investigated key generation approaches using channel parameters recorded in a real industrial environment. Our key results are that the key generation may take unpredictable long and that the resulting keys are of low quality with respect to the test for randomness we applied.
  • Item
    Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials
    (Amsterdam [u.a.] : Elsevier, 2018) Gnanaseelan, Minoj; Chen, Yian; Luo, Jinji; Krause, Beate; Pionteck, Jürgen; Pötschke, Petra; Qu, Haisong
    Thermoelectric materials based on cellulose/carbon nanotube (CNT) nanocomposites have been developed by a facile approach and the effects of amount (2–10 wt%) and types of CNTs (single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs)) on the morphology (films and aerogels) and the thermoelectric properties of the nanocomposites have been investigated. Composite films based on SWCNTs showed significantly higher electrical conductivity (5 S/cm at 10 wt%) and Seebeck coefficient (47.2 μV/K at 10 wt%) compared to those based on MWCNTs (0.9 S/cm and 11 μV/K, respectively). Lyophilization, leading to development of aerogels with sub-micron sized pores, decreased the electrical conductivity for both types by one order of magnitude, but did not affect the Seebeck coefficient of MWCNT based nanocomposites. For SWCNT containing aerogels, higher Seebeck coefficients than for films were measured at 3 and 4 wt% but significantly lower values at higher loadings. CNT addition increased the thermal conductivity from 0.06 to 0.12 W/(m∙K) in the films, whereas the lyophilization significantly reduced it towards values between 0.01 and 0.09 W/(m∙K) for the aerogels. The maximum Seebeck coefficient, power factor, and ZT observed in this study are 49 μV/K for aerogels with 3 wt% SWCNTs, 1.1 μW/(m∙K2) for composite films with 10 wt% SWCNTs, and 7.4 × 10−4 for films with 8 wt% SWCNTs, respectively.
  • Item
    Development of electrically conductive microstructures based on polymer/CNT nanocomposites via two-photon polymerization
    (Amsterdam [u.a.] : Elsevier, 2017) Staudinger, U.; Zyla, G.; Krause, Beate; Janke, A.; Fischer, D.; Esen, C.; Voit, B.; Ostendorf, A.
    Femtosecond laser-induced two-photon polymerization (2PP) of carbon nanofiller doped polymers was utilized to produce electrically conductive microstructures, which are expected to be applicable as microelectronic components or micro-electromechanical systems in sensors. The nanocomposites were processed by compounding an inorganic-organic hybrid material with two different types (short and long) of single walled carbon nanotubes (SWCNTs). Different SWCNT contents were dispersed in the polymer by sonication to adjust the electrical conductivity of the nanocomposites. Low surface resistivity values of ~ 4.6 × 105 Ω/sq. could be measured for coated reference films with a thickness of 30 μm having an exceptionally low SWCNT content of 0.01 wt% of the long type of SWCNTs. In contrast, a higher minimum resistivity of 1.5 × 106 Ω/sq. was exhibited for composites with a higher content, 2 wt%, of short SWCNTs. The structural quality of the microstructures processed by 2PP was mainly influenced by the dispersion quality of the SWCNTs. To characterize the electrical conductivity, conductive atomic force microscopy was applied for the first time. In microstructures with 0.05 wt% of the long type of SWCNTs, a contact current could be detected over a wide range of the measured area visualizing the electrical conductive CNT network, which has not been reported before.