Search Results

Now showing 1 - 1 of 1
  • Item
    Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO 3
    ([London] : Nature Publishing Group UK, 2019) Wu, L.S.; Nikitin, S.E.; Wang, Z.; Zhu, W.; Batista, C.D.; Tsvelik, A.M.; Samarakoon, A.M.; Tennant, D.A.; Brando, M.; Vasylechko, L.; Frontzek, M.; Savici, A.T.; Sala, G.; Ehlers, G.; Christianson, A.D.; Lumsden, M.D.; Podlesnyak, A.
    Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin–orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement transitions in different regions of magnetic field–temperature phase diagram.