Search Results

Now showing 1 - 10 of 11
  • Item
    Recent advances in single molecule magnetism of dysprosium-metallofullerenes
    (Cambridge : Royal Society of Chemistry, 2019) Spree, L.; Popov, A.A.
    This article outlines the magnetic properties of single molecule magnets based on Dy-encapsulating endohedral metallofullerenes. The factors that govern these properties, such as the influence of different non-metal species in clusterfullerenes, the cage size, and cage isomerism are discussed, as well as the recent successful isolation of dimetallofullerenes with unprecedented magnetic properties. Finally, recent advances towards the organization of endohedral metallofullerenes in 1D, 2D, and 3D ordered structures with potential for devices are reviewed.
  • Item
    The springtail cuticle as a blueprint for omniphobic surfaces
    (Cambridge : Royal Society of Chemistry, 2015) Hensel, René; Neinhuis, Christoph; Werner, Carsten
    Omniphobic surfaces found in nature have great potential for enabling novel and emerging products and technologies to facilitate the daily life of human societies. One example is the water and even oil-repellent cuticle of springtails (Collembola). The wingless arthropods evolved a highly textured, hierarchically arranged surface pattern that affords mechanical robustness and wetting resistance even at elevated hydrostatic pressures. Springtail cuticle-derived surfaces therefore promise to overcome limitations of lotus-inspired surfaces (low durability, insufficient repellence of low surface tension liquids). In this review, we report on the liquid-repellent natural surfaces of arthropods living in aqueous or temporarily flooded habitats including water-walking insects or water spiders. In particular, we focus on springtails presenting an overview on the cuticular morphology and chemistry and their biological relevance. Based on the obtained liquid repellence of a variety of liquids with remarkable efficiency, the review provides general design criteria for robust omniphobic surfaces. In particular, the resistance against complete wetting and the mechanical stability strongly both depend on the topographical features of the nano- and micropatterned surface. The current understanding of the underlying principles and approaches to their technological implementation are summarized and discussed.
  • Item
    Investigation of the electrical properties of standard and low-gas-flow ICPs using novel probes for the direct measurements of RF voltage and current in the load coil and the corresponding calculation of the ICP power
    (Cambridge : Royal Society of Chemistry, 2015) Voronov, M.; Hoffmann, V.; Birus, D.; Engelhard, C.; Buscher, W.
    New probes for the direct measurement of high radio-frequency (RF) voltage and current in the load coil of an inductively coupled plasma (ICP) are presented. Based on these measurements, a method for the calculation of power in the ICP is developed. Electrical parameters of the ICP are measured for a wide range of operational conditions in a standard ICP torch with wet aerosol introduction. Further, changes of the electrical parameters are monitored when operating the ICP with a very low argon flow rate of only 0.6 L min−1 using a so-called “Static High-Sensitivity ICP” (SHIP) torch. Direct measurements with the new RF probes allow following the evolution of plasma properties as a function of time. Noteworthy, it is found that there is a strong correlation between the plasma power and temperature changes in the RF generator itself. Depending on the plasma parameters, the measured plasma power was shown to differ significantly from the applied power (in the vendor software settings).
  • Item
    Glow discharge optical emission spectrometry for quantitative depth profiling of CIGS thin-films
    (Cambridge : Royal Society of Chemistry, 2019) Kodalle, T.; Greiner, D.; Brackmann, V.; Prietzel, K.; Scheu, A.; Bertram, T.; Reyes-Figueroa, P.; Unold, T.; Abou-Ras, D.; Schlatmann, R.; Kaufmann, C.A.; Hoffmann, V.
    Determining elemental distributions dependent on the thickness of a sample is of utmost importance for process optimization in different fields e.g. from quality control in the steel industry to controlling doping profiles in semiconductor labs. Glow discharge optical emission spectrometry (GD-OES) is a widely used tool for fast measurements of depth profiles. In order to be able to draw profound conclusions from GD-OES profiles, one has to optimize the measurement conditions for the given application as well as to ensure the suitability of the used emission lines. Furthermore a quantification algorithm has to be implemented to convert the measured properties (intensity of the emission lines versus sputtering time) to more useful parameters, e.g. the molar fractions versus sample depth (depth profiles). In this contribution a typical optimization procedure of the sputtering parameters is adapted to the case of polycrystalline Cu(In,Ga)(S,Se)2 thin films, which are used as absorber layers in solar cell devices, for the first time. All emission lines used are shown to be suitable for the quantification of the depth profiles and a quantification routine based on the assumption of constant emission yield is used. The accuracy of this quantification method is demonstrated on the basis of several examples. The bandgap energy profile of the compound semiconductor, as determined by the elemental distributions, is compared to optical measurements. The depth profiles of Na-the main dopant in these compounds-are correlated with measurements of the open-circuit voltage of the corresponding devices, and the quantification of the sample depth is validated by comparison with profilometry and X-ray fluorescence measurements.
  • Item
    Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors
    (Cambridge : Royal Society of Chemistry, 2015) Härtel, Andreas; Janssen, Mathijs; Weingarth, Daniel; Presser, Volker; van Roij, Rene
    Thermal energy is abundantly available, and especially low-grade heat is often wasted in industrial processes as a by-product. Tapping into this vast energy reservoir with cost-attractive technologies may become a key element for the transition to an energy-sustainable economy and society. We propose a novel heat-to-current converter which is based on the temperature dependence of the cell voltage of charged supercapacitors. Using a commercially available supercapacitor, we observed a thermal cell-voltage rise of around 0.6 mV K-1 over a temperature window of 0 °C to 65 °C. Within our theoretical model, this can be used to operate a Stirling-like charge-voltage cycle whose efficiency is competitive to the most-efficient thermoelectric (Seebeck) engines. Our proposed heat-to-current converter is built from cheap materials, contains no moving parts, and could operate with a plethora of electrolytes which can be chosen for optimal performance at specific working temperatures. Therefore, this heat-to-current converter is interesting for small-scale, domestic, and industrial applications.
  • Item
    Direct catalytic conversion of cellulose to liquid straight-chain alkanes
    (Cambridge : Royal Society of Chemistry, 2014) Op de Beeck, Beau; Dusselier, Michiel; Geboers, Jan; Holsbeek, Jensen; Morré, Eline; Oswald, Steffen; Giebeler, Lars; Sels, Bert F.
    High yields of liquid straight-chain alkanes were obtained directly from cellulosic feedstock in a one-pot biphasic catalytic system. The catalytic reaction proceeds at elevated temperatures under hydrogen pressure in the presence of tungstosilicic acid, dissolved in the aqueous phase, and modified Ru/C, suspended in the organic phase. Tungstosilicic acid is primarily responsible for cellulose hydrolysis and dehydration steps, while the modified Ru/C selectively hydrogenates intermediates en route to the liquid alkanes. Under optimal conditions, microcrystalline cellulose is converted to 82% n-decane-soluble products, mainly n-hexane, within a few hours, with a minimum formation of gaseous and char products. The dominant route to the liquid alkanes proceeds via 5-hydroxymethylfurfural (HMF), whereas the more common pathway via sorbitol appears to be less efficient. High liquid alkane yields were possible through (i) selective conversion of cellulose to glucose and further to HMF by gradually heating the reactor, (ii) a proper hydrothermal modification of commercial Ru/C to tune its chemoselectivity to furan hydrogenation rather than glucose hydrogenation, and (iii) the use of a biphasic reaction system with optimal partitioning of the intermediates and catalytic reactions. The catalytic system is capable of converting subsequent batches of fresh cellulose, enabling accumulation of the liquid alkanes in the organic phase during subsequent runs. Its robustness is illustrated in the conversion of the raw (soft)wood sawdust.
  • Item
    Water desalination via capacitive deionization: what is it and what can we expect from it?
    (Cambridge : Royal Society of Chemistry, 2015) Suss, M.E.; Porada, S.; Sun, X.; Biesheuvel, P.M.; Yoon, J.; Presser, V.
    Capacitive deionization (CDI) is an emerging technology for the facile removal of charged ionic species from aqueous solutions, and is currently being widely explored for water desalination applications. The technology is based on ion electrosorption at the surface of a pair of electrically charged electrodes, commonly composed of highly porous carbon materials. The CDI community has grown exponentially over the past decade, driving tremendous advances via new cell architectures and system designs, the implementation of ion exchange membranes, and alternative concepts such as flowable carbon electrodes and hybrid systems employing a Faradaic (battery) electrode. Also, vast improvements have been made towards unraveling the complex processes inherent to interfacial electrochemistry, including the modelling of kinetic and equilibrium aspects of the desalination process. In our perspective, we critically review and evaluate the current state-of-the-art of CDI technology and provide definitions and performance metric nomenclature in an effort to unify the fast-growing CDI community. We also provide an outlook on the emerging trends in CDI and propose future research and development directions.
  • Item
    Multivalent bonds in self-assembled bundles of ultrathin gold nanowires
    (Cambridge : Royal Society of Chemistry, 2016) Reiser, Beate; Gerstner, Dominik; González-García, Lola; Maurer, Johannes H.M.; Kanelidis, Ioannis; Kraus, Tobias
    Ultrathin gold nanowires are unusual colloidal objects that assemble into bundles with line contacts between parallel wires. Each molecule in the contact line interacts with many ligand and solvent molecules. We used X-ray scattering and electron microscopy to study how these interactions control assembly.
  • Item
    Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds
    (Cambridge : Royal Society of Chemistry, 2015) Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L.; Wenz, Gerhard; Bennewitz, Roland
    We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.
  • Item
    Redox chemistry in the pigment eumelanin as a function of temperature using broadband dielectric spectroscopy
    (Cambridge : Royal Society of Chemistry, 2019) Motovilov, K.A.; Grinenko, V.; Savinov, M.; Gagkaeva, Z.V.; Kadyrov, L.S.; Pronin, A.A.; Bedran, Z.V.; Zhukova, E.S.; Mostert, A.B.; Gorshunov, B.P.
    Conductive biomolecular systems are investigated for their promise of new technologies. One biomolecular material that has garnered interest for device applications is eumelanin. Its unusual properties have led to its incorporation in a wide set of platforms including transistor devices and batteries. Much of eumelanin's conductive properties are due to a solid state redox comproportionation reaction. However, most of the work that has been done to demonstrate the role of the redox chemistry in eumelanin has been via control of eumelanin's hydration content with scant attention given to temperature dependent behavior. Here we demonstrate for the first time consistency between hydration and temperature effects for the comproportionation conductivity model utilizing dielectric spectroscopy, heat capacity measurements, frequency scaling phenomena and recognizing that activation energies in the range of ∼0.5 eV correspond to proton dissociation events. Our results demonstrate that biomolecular conductivity models should account for temperature and hydration effects coherently.