Search Results

Now showing 1 - 10 of 14
  • Item
    Improving the LPJmL4-SPITFIRE vegetation–fire model for South America using satellite data
    (Katlenburg-Lindau : Copernicus, 2019) Drüke, Markus; Forkel, Matthias; von Bloh, Werner; Sakschewski, Boris; Cardoso, Manoel; Bustamante, Mercedes; Kurths, Jürgen; Thonicke, Kirsten
    Vegetation fires influence global vegetation distribution, ecosystem functioning, and global carbon cycling. Specifically in South America, changes in fire occurrence together with land-use change accelerate ecosystem fragmentation and increase the vulnerability of tropical forests and savannas to climate change. Dynamic global vegetation models (DGVMs) are valuable tools to estimate the effects of fire on ecosystem functioning and carbon cycling under future climate changes. However, most fire-enabled DGVMs have problems in capturing the magnitude, spatial patterns, and temporal dynamics of burned area as observed by satellites. As fire is controlled by the interplay of weather conditions, vegetation properties, and human activities, fire modules in DGVMs can be improved in various aspects. In this study we focus on improving the controls of climate and hence fuel moisture content on fire danger in the LPJmL4-SPITFIRE DGVM in South America, especially for the Brazilian fire-prone biomes of Caatinga and Cerrado. We therefore test two alternative model formulations (standard Nesterov Index and a newly implemented water vapor pressure deficit) for climate effects on fire danger within a formal model–data integration setup where we estimate model parameters against satellite datasets of burned area (GFED4) and aboveground biomass of trees. Our results show that the optimized model improves the representation of spatial patterns and the seasonal to interannual dynamics of burned area especially in the Cerrado and Caatinga regions. In addition, the model improves the simulation of aboveground biomass and the spatial distribution of plant functional types (PFTs). We obtained the best results by using the water vapor pressure deficit (VPD) for the calculation of fire danger. The VPD includes, in comparison to the Nesterov Index, a representation of the air humidity and the vegetation density. This work shows the successful application of a systematic model–data integration setup, as well as the integration of a new fire danger formulation, in order to optimize a process-based fire-enabled DGVM. It further highlights the potential of this approach to achieve a new level of accuracy in comprehensive global fire modeling and prediction.
  • Item
    Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)
    (Katlenburg-Lindau : Copernicus, 2019) Lutz, Femke; Herzfeld, Tobias; Heinke, Jens; Rolinski, Susanne; Schaphoff, Sibyll; von Bloh, Werner; Stoorvogel, Jetse J.; Müller, Christoph
    The effects of tillage on soil properties, crop productivity, and global greenhouse gas emissions have been discussed in the last decades. Global ecosystem models have limited capacity to simulate the various effects of tillage. With respect to the decomposition of soil organic matter, they either assume a constant increase due to tillage or they ignore the effects of tillage. Hence, they do not allow for analysing the effects of tillage and cannot evaluate, for example, reduced tillage or no tillage (referred to here as “no-till”) practises as mitigation practices for climate change. In this paper, we describe the implementation of tillage-related practices in the global ecosystem model LPJmL. The extended model is evaluated against reported differences between tillage and no-till management on several soil properties. To this end, simulation results are compared with published meta-analyses on tillage effects. In general, the model is able to reproduce observed tillage effects on global, as well as regional, patterns of carbon and water fluxes. However, modelled N fluxes deviate from the literature values and need further study. The addition of the tillage module to LPJmL5 opens up opportunities to assess the impact of agricultural soil management practices under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas emissions, and other environmental indicators.
  • Item
    A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: An example from the Amazon region
    (Katlenburg-Lindau : Copernicus, 2018) Rammig, Anja; Heinke, Jens; Hofhansl, Florian; Verbeeck, Hans; Baker, Timothy R.; Christoffersen, Bradley; Ciais, Philippe; De Deurwaerder, Hannes; Fleischer, Katrin; Galbraith, David; Guimberteau, Matthieu; Huth, Andreas; Johnson, Michelle; Krujit, Bart; Langerwisch, Fanny; Meir, Patrick; Papastefanou, Phillip; Sampaio, Gilvan; Thonicke, Kirsten; von Randow, Celso; Zang, Christian; Rödig, Edna
    Comparing model output and observed data is an important step for assessing model performance and quality of simulation results. However, such comparisons are often hampered by differences in spatial scales between local point observations and large-scale simulations of grid cells or pixels. In this study, we propose a generic approach for a pixel-to-point comparison and provide statistical measures accounting for the uncertainty resulting from landscape variability and measurement errors in ecosystem variables. The basic concept of our approach is to determine the statistical properties of small-scale (within-pixel) variability and observational errors, and to use this information to correct for their effect when large-scale area averages (pixel) are compared to small-scale point estimates. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity (woody net primary productivity, NPP) and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest, a region with the typical problem of low data availability, potential scale mismatch and thus high model uncertainty. We find that the DGVMs under- and overestimate aboveground biomass by 25% and up to 60%, respectively. Our comparison metrics provide a quantitative measure for model-data agreement and show moderate to good agreement with the region-wide spatial biomass pattern detected by plot observations. However, all four DGVMs overestimate woody productivity and underestimate residence time of woody biomass even when accounting for the large uncertainty range of the observational data. This is because DGVMs do not represent the relation between productivity and residence time of woody biomass correctly. Thus, the DGVMs may simulate the correct large-scale patterns of biomass but for the wrong reasons. We conclude that more information about the underlying processes driving biomass distribution are necessary to improve DGVMs. Our approach provides robust statistical measures for any pixel-to-point comparison, which is applicable for evaluation of models and remote-sensing products.
  • Item
    Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century
    (Katlenburg-Lindau : Copernicus, 2019) Gidden, Matthew J.; Riahi, Keywan; Smith, Steven J.; Fujimori, Shinichiro; Luderer, Gunnar; Kriegler, Elmar; van Vuuren, Detlef P.; van den Berg, Maarten; Feng, Leyang; Klein, David; Calvin, Katherine; Doelman, Jonathan C.; Frank, Stefan; Fricko, Oliver; Harmsen, Mathijs; Hasegawa, Tomoko; Havlik, Petr; Hilaire, Jérôme; Hoesly, Rachel; Horing, Jill; Popp, Alexander; Stehfest, Elke; Takahashi, Kiyoshi
    We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources, a key deliverable of the ScenarioMIP experiment within CMIP6. Integrated assessment model results for 14 different emissions species and 13 emissions sectors are provided for each scenario with consistent transitions from the historical data used in CMIP6 to future trajectories using automated harmonization before being downscaled to provide higher emissions source spatial detail. We find that the scenarios span a wide range of end-of-century radiative forcing values, thus making this set of scenarios ideal for exploring a variety of warming pathways. The set of scenarios is bounded on the low end by a 1.9 W m−2 scenario, ideal for analyzing a world with end-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2 scenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial levels. Between these two extremes, scenarios are provided such that differences between forcing outcomes provide statistically significant regional temperature outcomes to maximize their usefulness for downstream experiments within CMIP6. A wide range of scenario
  • Item
    A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios
    (Katlenburg-Lindau : Copernicus, 2018) Kim, HyeJin; Rosa, Isabel M. D.; Alkemade, Rob; Leadley, Paul; Hurtt, George; Popp, Alexander; van Vuuren, Detlef P.; Anthoni, Peter; Arneth, Almut; Baisero, Daniele; Caton, Emma; Chaplin-Kramer, Rebecca; Chini, Louise; De Palma, Adriana; Di Fulvio, Fulvio; Di Marco, Moreno; Espinoza, Felipe; Ferrier, Simon; Fujimori, Shinichiro; Gonzalez, Ricardo E.; Gueguen, Maya; Guerra, Carlos; Harfoot, Mike; Harwood, Thomas D.; Hasegawa, Tomoko; Haverd, Vanessa; Havlík, Petr; Hellweg, Stefanie; Hill, Samantha L. L.; Hirata, Akiko; Hoskins, Andrew J.; Janse, Jan H.; Jetz, Walter; Johnson, Justin A.; Krause, Andreas; Leclère, David; Martins, Ines S.; Matsui, Tetsuya; Merow, Cory; Obersteiner, Michael; Ohashi, Haruka; Poulter, Benjamin; Purvis, Andy; Quesada, Benjamin; Rondinini, Carlo; Schipper, Aafke M.; Sharp, Richard; Takahashi, Kiyoshi; Thuiller, Wilfried; Titeux, Nicolas; Visconti, Piero; Ware, Christopher; Wolf, Florian; Pereira, Henrique M.
    To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.
  • Item
    Flood risk in a range of spatial perspectives – from global to local scales
    (Katlenburg-Lindau : European Geophysical Society, 2019) Kundzewicz, Zbigniew W.; Su, Buda; Wang, Yanjun; Wang, Guojie; Wang, Guofu; Huang, Jinlong; Jiang, Tong
    The present paper examines flood risk (composed of hazard, exposure, and vulnerability) in a range of spatial perspectives – from the global to the local scale. It deals with observed records, noting that flood damage has been increasing. It also tackles projections for the future, related to flood hazard and flood losses. There are multiple factors driving flood hazard and flood risk and there is a considerable uncertainty in our assessments, and particularly in projections for the future. Further, this paper analyses options for flood risk reduction in several spatial dimensions, from global framework to regional to local scales. It is necessary to continue examination of the updated records of flood-related indices, trying to search for changes that influence flood hazard and flood risk in river basins.
  • Item
    Variability of snow cover and frost depth at the Potsdam station, Germany
    (Praha : Česká geografická společnost, 2016) Szwed, Małgorzata; Kundzewicz, Zbigniew W.; Mezghani, Abdelkader
    The presented paper examines variability of characteristics of snow cover (snow cover depth, number of days with snow cover and dates of beginning and end of snow cover) and frost depth in Potsdam. The study makes use of a unique long time series of data from the secular meteorological station in Potsdam (Germany), covering the time interval from 1893 to date. The observed behaviour of time series of snow is complex, and not easy to interpret. Even if shrinking snow cover is typically expected in the warming climate of the moderate zone, the change in Potsdam is largely dominated by inter-winter and intra-winter variability, rendering trend detection difficult. Nevertheless, an increasing, statistically significant trend for winter precipitation was detected with almost no changes in the snow fall. A statistical link between the NAO index and the snow cover depth as well as the number of snow cover days was found.
  • Item
    Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)
    (Katlenburg-Lindau : Copernicus, 2018) von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph; Rolinski, Susanne; Waha, Katharina; Zaehle, Sönke
    The well-established dynamical global vegetation, hydrology, and crop growth model LPJmL is extended with a terrestrial nitrogen cycle to account for nutrient limitations. In particular, processes of soil nitrogen dynamics, plant uptake, nitrogen allocation, response of photosynthesis and maintenance respiration to varying nitrogen concentrations in plant organs, and agricultural nitrogen management are included in the model. All new model features are described in full detail and the results of a global simulation of the historic past (1901-2009) are presented for evaluation of the model performance. We find that the implementation of nitrogen limitation significantly improves the simulation of global patterns of crop productivity. Regional differences in crop productivity, which had to be calibrated via a scaling of the maximum leaf area index, can now largely be reproduced by the model, except for regions where fertilizer inputs and climate conditions are not the yield-limiting factors. Furthermore, it can be shown that land use has a strong influence on nitrogen losses, increasing leaching by 93 %.
  • Item
    The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: Quantifying committed climate changes following zero carbon emissions
    (Katlenburg-Lindau : Copernicus, 2019) Jones, Chris D.; Frölicher, Thomas L.; Koven, Charles; MacDougall, Andrew H.; Matthews, H. Damon; Zickfeld, Kirsten; Rogelj, Joeri; Tokarska, Katarzyna B.; Gillett, Nathan P.; Ilyina, Tatiana; Meinshausen, Malte; Mengis, Nadine; Séférian, Roland; Eby, Michael; Burger, Friedrich A.
    The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.
  • Item
    Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams
    (Katlenburg-Lindau : Copernicus, 2018) Reese, Ronja; Winkelmann, Ricarda; Gudmundsson, G. Hilmar
    Currently, several large-scale ice-flow models impose a condition on ice flux across grounding lines using an analytically motivated parameterisation of grounding-line flux. It has been suggested that employing this analytical expression alleviates the need for highly resolved computational domains around grounding lines of marine ice sheets. While the analytical flux formula is expected to be accurate in an unbuttressed flow-line setting, its validity has hitherto not been assessed for complex and realistic geometries such as those of the Antarctic Ice Sheet. Here the accuracy of this analytical flux formula is tested against an optimised ice flow model that uses a highly resolved computational mesh around the Antarctic grounding lines. We find that when applied to the Antarctic Ice Sheet the analytical expression provides inaccurate estimates of ice fluxes for almost all grounding lines. Furthermore, in many instances direct application of the analytical formula gives rise to unphysical complex-valued ice fluxes. We conclude that grounding lines of the Antarctic Ice Sheet are, in general, too highly buttressed for the analytical parameterisation to be of practical value for the calculation of grounding-line fluxes.