Search Results

Now showing 1 - 10 of 79
  • Item
    Redetermination of EuScO3
    (Chester : International Union of Crystallography, 2009) Kahlenberg, V.; Maier, D.; Veličkov, B.
    Single crystals of europium(III) scandate(III), with ideal formula EuScO3, were grown from the melt using the micro-pulling-down method. The title compound crystallizes in an ortho-rhom-bic distorted perovskite-type structure, where Eu occupies the eightfold coordinated A sites (site symmetry m) and Sc resides on the centres of corner-sharing [ScO6] octa-hedra (B sites with site symmetry ). The structure of EuScO3 has been reported previously based on powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The results of the current redetermination based on single-crystal diffraction data shows an improvement in the precision of the structral and geometric parameters and reveals a defect-type structure. Site-occupancy refinements indicate an Eu deficiency on the A site coupled with O defects on one of the two O-atom positions. The crystallochemical formula of the investigated sample may thus be written as A(0.032Eu0.968)BScO2.952.
  • Item
    Redetermination of terbium scandate, revealing a defect-type perovskite derivative
    (Chester : International Union of Crystallography, 2008) Veličkov, B.; Kahlenberg, V.; Bertram, R.; Uecker, R.
    The crystal structure of terbium(III) scandate(III), with ideal formula TbScO3, has been reported previously on the basis of powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The current data were obtained from single crystals grown by the Czochralski method and show an improvement in the precision of the geometric parameters. Moreover, inductively coupled plasma optical emission spectrometry studies resulted in a nonstoichiometric composition of the title compound. Site-occupancy refinements based on diffraction data support the idea of a Tb deficiency on the A site (inducing O defects on the O2 position). The crystallochemical formula of the investigated sample thus may be written as A(0.04Tb0.96) BScO2.94. In the title compound, Tb occupies the eightfold- coordinated sites (site symmetry m) and Sc the centres of corner-sharing [ScO6] octa-hedra (site symmetry ). The mean bond lengths and site distortions fit well into the data of the remaining lanthanoid scandates in the series from DyScO3 to NdScO3. A linear structural evolution with the size of the lanthanoid from DyScO3 to NdScO3 can be predicted.
  • Item
    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals
    (Melville, NY : AIP Publ., 2019) Galazka, Zbigniew; Ganschow, Steffen; Schewski, Robert; Irmscher, Klaus; Klimm, Detlef; Kwasniewski, Albert; Pietsch, Mike; Fiedler, Andreas; Schulze-Jonack, Isabelle; Albrecht, Martin; Schröder, Thomas; Bickermann, Matthias
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.
  • Item
    Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Ringleb, Franziska; Andree, Stefan; Heidmann, Berit; Bonse, Jörn; Eylers, Katharina; Ernst, Owen; Boeck, Torsten; Schmid, Martina; Krüger, Jörg
    Micro-concentrator solar cells offer an attractive way to further enhance the efficiency of planar-cell technologies while saving absorber material. Here, two laser-based bottom-up processes for the fabrication of regular arrays of CuInSe2 and Cu(In,Ga)Se2 microabsorber islands are presented, namely one approach based on nucleation and one based on laser-induced forward transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated illumination.
  • Item
    Growth of crystalline phase change materials by physical deposition methods
    (Abingdon : Taylor & Francis Group, 2017) Boschker, Jos E.; Calarco, Raffaella
    Phase change materials are a technologically important materials class and are used for data storage in rewritable DVDs and in phase change random access memory. Furthermore, new applications for phase change materials are emerging. Phase change materials with a high structural quality, such as offered by epitaxial films, are needed in order to study the fundamental properties of phase change materials and to improve our understanding of this materials class. Here, we review the progress made in the growth of crystalline phase change materials by physical methods, such as molecular beam epitaxy, sputtering, and pulsed laser deposition. First, we discuss the difference and similarities between these physical deposition methods and the crystal structures of Ge2Sb2Te5, the prototype phase change material. Next, we focus on the growth of epitiaxial GST films on (0 0 1)- and (1 1 1)-oriented substrates, leading to the conclusion that (1 1 1)-oriented substrates are preferred for the growth of phase change materials. Finally, the growth of GeTe/Sb2Te3 superlattices on amorphous and single crystalline substrates is discussed.
  • Item
    REScO3 Substrates—Purveyors of Strain Engineering
    (Weinheim : Wiley-VCH, 2019) Klimm, Detlef; Guguschev, Christo; Ganschow, Steffen; Bickermann, Matthias; Schlom, Darrell G.
    The thermodynamic and crystallographic background for the development of substrate crystals that are suitable for the epitaxial deposition of biaxially strained functional perovskite layers is reviewed. In such strained layers the elastic energy delivers an additional contribution to the Gibbs free energy, which allows the tuning of physical properties and phase transition temperatures to desired values. For some oxide systems metastable phases can even be accessed. Rare-earth scandates, REScO3, are well suited as substrate crystals because they combine mechanical and chemical stability in the epitaxy process with an adjustable range of pseudo-cubic lattice parameters in the 3.95 to 4.02 Å range. To further tune the lattice parameters, chemical substitution for the RE or Sc is possible. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Ferroelectric Self-Poling in GeTe Films and Crystals
    (Basel : MDPI, 2019) Kriegner, Dominik; Springholz, Gunther; Richter, Carsten; Pilet, Nicolas; Müller, Elisabeth; Capron, Marie; Berger, Helmut; Holý, Václav; Dil, J. Hugo; Krempaský, Juraj
    Ferroelectric materials are used in actuators or sensors because of their non-volatile macroscopic electric polarization. GeTe is the simplest known diatomic ferroelectric endowed with exceedingly complex physics related to its crystalline, amorphous, thermoelectric, and—fairly recently discovered—topological properties, making the material potentially interesting for spintronics applications. Typically, ferroelectric materials possess random oriented domains that need poling to achieve macroscopic polarization. By using X-ray absorption fine structure spectroscopy complemented with anomalous diffraction and piezo-response force microscopy, we investigated the bulk ferroelectric structure of GeTe crystals and thin films. Both feature multi-domain structures in the form of oblique domains for films and domain colonies inside crystals. Despite these multi-domain structures which are expected to randomize the polarization direction, our experimental results show that at room temperature there is a preferential ferroelectric order remarkably consistent with theoretical predictions from ideal GeTe crystals. This robust self-poled state has high piezoelectricity and additional poling reveals persistent memory effects. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Quasi-Transient Calculation of Czochralski Growth of Ge Crystals Using the Software Elmer
    (Basel : MDPI, 2019) Miller, Wolfram; Abrosimov, Nikolay; Fischer, Jörg; Gybin, Alexander; Juda, Uta; Kayser, Stefan; Janicskó-Csáthy, Jószef
    A numerical scheme was developed to compute the thermal and stress fields of the Czochralski process in a quasi-time dependent mode. The growth velocity was computed from the geometrical changes in melt and crystal due to pulling for every stage, for which the thermal and stress fields were computed by using the open source software Elmer. The method was applied to the Czochralski growth of Ge crystals by inductive heating. From a series of growth experiments, we chose one as a reference to check the validity of the scheme with respect to this Czochralski process. A good agreement both for the shapes of the melt/crystal interface at various time steps and the change in power consumption with process time was observed. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Growth and Properties of Intentionally Carbon-Doped GaN Layers
    (Weinheim : Wiley-VCH, 2019) Richter, Eberhard; Beyer, Franziska C.; Zimmermann, Friederike; Gärtner, Günter; Irmscher, Klaus; Gamov, Ivan; Heitmann, Johannes; Weyers, Markus; Tränkle, Günther
    Carbon-doping of GaN layers with thickness in the mm-range is performed by hydride vapor phase epitaxy. Characterization by optical and electrical measurements reveals semi-insulating behavior with a maximum of specific resistivity of 2 × 1010 Ω cm at room temperature found for a carbon concentration of 8.8 × 1018 cm−3. For higher carbon levels up to 3.5 × 1019 cm−3, a slight increase of the conductivity is observed and related to self-compensation and passivation of the acceptor. The acceptor can be identified as CN with an electrical activation energy of 0.94 eV and partial passivation by interstitial hydrogen. In addition, two differently oriented tri-carbon defects, CN-a-CGa-a-CN and CN-a-CGa-c-CN, are identified which probably compensate about two-thirds of the carbon which is incorporated in excess of 2 × 1018 cm−3. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Numerical modelling of the czochralski growth of β-Ga2O3
    (Basel : MDPI, 2017) Miller, Wolfram; Böttcher, Klaus; Galazka, Zbigniew; Schreuer, Jürgen
    Our numerical modelling of the Czochralski growth of single crystalline β-Ga2O3 crystals (monoclinic symmetry) starts at the 2D heat transport analysis within the crystal growth furnace, proceeds with the 3D heat transport and fluid flow analysis in the crystal-melt-crucible arrangement and targets the 3D thermal stress analysis within the β-Ga2O3 crystal. In order to perform the stress analysis, we measured the thermal expansion coefficients and the elastic stiffness coefficients in two samples of a β-Ga2O3 crystal grown at IKZ. Additionally, we analyse published data of β-Ga2O3 material properties and use data from literature for comparative calculations. The computations were performed by the software packages CrysMAS, CGsim, Ansys-cfx and comsol Multiphysics. By the hand of two different thermal expansion data sets and two different crystal orientations, we analyse the elastic stresses in terms of the von-Mises stress.