Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Profiling of fine and coarse particle mass: Case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes

2012, Ansmann, A., Seifert, P., Tesche, M., Wandinger, U.

The polarization lidar photometer networking (POLIPHON) method introduced to separate coarse-mode and fine-mode particle properties of Eyjafjallajökull volcanic aerosols in 2010 is extended to cover Saharan dust events as well. Furthermore, new volcanic dust observations performed after the Grimsvötn volcanic eruptions in 2011 are presented. The retrieval of particle mass concentrations requires mass-specific extinction coefficients. Therefore, a review of recently published mass-specific extinction coefficients for Saharan dust and volcanic dust is given. Case studies of four different scenarios corroborate the applicability of the profiling technique: (a) Saharan dust outbreak to central Europe, (b) Saharan dust plume mixed with biomass-burning smoke over Cape Verde, and volcanic aerosol layers originating from (c) the Eyjafjallajökull eruptions in 2010 and (d) the Grimsvötn eruptions in 2011. Strong differences in the vertical aerosol layering, aerosol mixing, and optical properties are observed for the different volcanic events.

Loading...
Thumbnail Image
Item

Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke

2020, Holanda, Bruna A., Pöhlker, Mira L., Walter, David, Saturno, Jorge, Sörgel, Matthias, Ditas, Jeannine, Ditas, Florian, Schulz, Christiane, Aurélio Franco, Marco, Wang, Qiaoqiao, Donth, Tobias, Artaxo, Paulo, Barbosa, Henrique M.J., Borrmann, Stephan, Braga, Ramon, Brito, Joel, Cheng, Yafang, Dollner, Maximilian, Kaiser, JohannesW., Klimach, Thomas, Knote, Christoph, Krüger, Ovid O., Fütterer, Daniel, Lavrič, Jošt V., Ma, Nan, Machado, Luiz A.T., Ming, Jing, Morais, Fernando G., Paulsen, Hauke, Sauer, Daniel, Schlager, Hans, Schneider, Johannes, Su, Hang, Weinzierl, Bernadett, Walser, Adrian, Wendisch, Manfred, Ziereis, Helmut, Zöger, Martin, Pöschl, Ulrich, Andreae, Meinrat O., Pöhlker, Christopher

Black carbon (BC) aerosols influence the Earth's atmosphere and climate, but their microphysical properties, spatiotemporal distribution, and long-range transport are not well constrained. This study presents airborne observations of the transatlantic transport of BC-rich African biomass burning (BB) smoke into the Amazon Basin using a Single Particle Soot Photometer (SP2) as well as several complementary techniques. We base our results on observations of aerosols and trace gases off the Brazilian coast onboard the HALO (High Altitude and LOng range) research aircraft during the ACRIDICON-CHUVA campaign in September 2014. During flight AC19 over land and ocean at the northeastern coastline of the Amazon Basin, we observed a BCrich layer at ∼ 3:5 km altitude with a vertical extension of ∼ 0:3 km. Backward trajectories suggest that fires in African grasslands, savannas, and shrublands were the main source of this pollution layer and that the observed BB smoke had undergone more than 10 d of atmospheric transport and aging over the South Atlantic before reaching the Amazon Basin. The aged smoke is characterized by a dominant accumulation mode, centered at about 130 nm, with a particle concentration of Nacc D 850±330 cm-3. The rBC particles account for ∼ 15 % of the submicrometer aerosol mass and ∼ 40 % of the total aerosol number concentration. This corresponds to a mass concentration range from 0.5 to 2 μ g m-3 (1st to 99th percentiles) and a number concentration range from 90 to 530 cm-3. Along with rBC, high cCO (150 ± 30 ppb) and cO3 (56 ± 9 ppb) mixing ratios support the biomass burning origin and pronounced photochemical aging of this layer. Upon reaching the Amazon Basin, it started to broaden and to subside, due to convective mixing and entrainment of the BB aerosol into the boundary layer. Satellite observations show that the transatlantic transport of pollution layers is a frequently occurring process, seasonally peaking in August/September. By analyzing the aircraft observations together with the long-term data from the Amazon Tall Tower Observatory (ATTO), we found that the transatlantic transport of African BB smoke layers has a strong impact on the northern and central Amazonian aerosol population during the BBinfluenced season (July to December). In fact, the early BB season (July to September) in this part of the Amazon appears to be dominated by African smoke, whereas the later BB season (October to December) appears to be dominated by South American fires. This dichotomy is reflected in pronounced changes in aerosol optical properties such as the single scattering albedo (increasing from 0.85 in August to 0.90 in November) and the BC-to-CO enhancement ratio (decreasing from 11 to 6 ng m-3 ppb-1). Our results suggest that, despite the high fraction of BC particles, the African BB aerosol acts as efficient cloud condensation nuclei (CCN), with potentially important implications for aerosol-cloud interactions and the hydrological cycle in the Amazon. © 2020 Author(s).