Search Results

Now showing 1 - 10 of 22
  • Item
    Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Effcient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
    (Basel : Molecular Diversity Preservation International, 2020) Gorzkiewicz, Michał; Kopeć, Olga; Janaszewska, Anna; Konopka, Małgorzata; Pędziwiatr-Werbicka, Elżbieta; Tarasenko, Irina I.; Bezrodnyi, Valeriy V.; Neelov, Igor M.; Klajnert-Maculewicz, Barbara
    The disruption of the cellular pathways of protein biosynthesis through the mechanism of RNA interference has been recognized as a tool of great diagnostic and therapeutic significance. However, in order to fully exploit the potential of this phenomenon, efficient and safe carriers capable of overcoming extra-and intracellular barriers and delivering siRNA to the target cells are needed. Recently, attention has focused on the possibility of the application of multifunctional nanoparticles, dendrimers, as potential delivery devices for siRNA. The aim of the present work was to evaluate the formation of dendriplexes using novel poly(lysine) dendrimers (containing lysine and arginine or histidine residues in their structure), and to verify the hypothesis that the use of these polymers may allow an efficient method of siRNA transfer into the cells in vitro to be obtained. The fluorescence polarization studies, as well as zeta potential and hydrodynamic diameter measurements were used to characterize the dendrimer:siRNA complexes. The cytotoxicity of dendrimers and dendriplexes was evaluated with the resazurin-based assay. Using the flow cytometry technique, the efficiency of siRNA transport to the myeloid cells was determined. This approach allowed us to determine the properties and optimal molar ratios of dendrimer:siRNA complexes, as well as to demonstrate that poly(lysine) dendrimers may serve as efficient carriers of genetic material, being much more effective than the commercially available transfection agent Lipofectamine 2000. This outcome provides the basis for further research on the application of poly(lysine) dendrimers as carriers for nucleic acids in the field of gene therapy. © 2020 by the authors.
  • Item
    An Innovative Therapeutic Option for the Treatment of Skeletal Sarcomas: Elimination of Osteo- and Ewing’s Sarcoma Cells Using Physical Gas Plasma
    (Basel : Molecular Diversity Preservation International, 2020) Jacoby, Josephine M.; Strakeljahn, Silas; Nitsch, Andreas; Bekeschus, Sander; Hinz, Peter; Mustea, Alexander; Ekkernkamp, Axel; Tzvetkov, Mladen V.; Haralambiev, Lyubomir; Stope, Matthias B.
    Osteosarcoma and Ewing’s sarcoma are the most common malignant bone tumors. Conventional therapies such as polychemotherapy, local surgery, and radiotherapy improve the clinical outcome for patients. However, they are accompanied by acute and chronic side effects that affect the quality of life of patients, motivating novel research lines on therapeutic options for the treatment of sarcomas. Previous experimental work with physical plasma operated at body temperature (cold atmospheric plasma, CAP) demonstrated anti-oncogenic effects on different cancer cell types. This study investigated the anti-cancer effect of CAP on two bone sarcoma entities, osteosarcoma and Ewing’s sarcoma, which were represented by four cell lines (U2-OS, MNNG/HOS, A673, and RD-ES). A time-dependent anti-proliferative effect of CAP on all cell lines was observed. CAP-induced alterations in cell membrane functionality were detected by performing a fluorescein diacetate (FDA) release assay and an ATP release assay. Additionally, modifications of the cell membrane and modifications in the actin cytoskeleton composition were examined using fluorescence microscopy monitoring dextran-uptake assay and G-/F-actin distribution. Furthermore, the CAP-induced induction of apoptosis was determined by TUNEL and active caspases assays. The observations suggest that a single CAP treatment of bone sarcoma cells may have significant anti-oncogenic effects and thus may be a promising extension to existing applications. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Inhibition of Angiogenesis by Treatment with Cold Atmospheric Plasma as a Promising Therapeutic Approach in Oncology
    (Basel : Molecular Diversity Preservation International, 2020) Haralambiev, Lyubomir; Neuffer, Ole; Nitsch, Andreas; Kross, Nele C.; Bekeschus, Sander; Hinz, Peter; Mustea, Alexander; Ekkernkamp, Axel; Gümbel, Denis; Stope, Matthias B.
    Background: Cold atmospheric plasma (CAP) is increasingly used in the field of oncology. Many of the mechanisms of action of CAP, such as inhibiting proliferation, DNA breakage, or the destruction of cell membrane integrity, have been investigated in many different types of tumors. In this regard, data are available from both in vivo and in vitro studies. Not only the direct treatment of a tumor but also the influence on its blood supply play a decisive role in the success of the therapy and the patient’s further prognosis. Whether the CAP influences this process is unknown, and the first indications in this regard are addressed in this study. Methods: Two different devices, kINPen and MiniJet, were used as CAP sources. Human endothelial cell line HDMEC were treated directly and indirectly with CAP, and growth kinetics were performed. To indicate apoptotic processes, caspase-3/7 assay and TUNEL assay were used. The influence of CAP on cellular metabolism was examined using the MTT and glucose assay. After CAP exposure, tube formation assay was performed to examine the capillary tube formation abilities of HDMEC and their migration was messured in separate assays. To investigate in a possible mutagenic effect of CAP treatment, a hypoxanthine-guanine-phosphoribosyl-transferase assay with non malignant cell (CCL-93) line was performed. Results: The direct CAP treatment of the HDMEC showed a robust growth-inhibiting effect, but the indirect one did not. The MMT assay showed an apparent reduction in cell metabolism in the first 24 h after CAP treatment, which appeared to normalize 48 h and 72 h after CAP application. These results were also confirmed by the glucose assay. The caspase 3/7 assay and TUNEL assay showed a significant increase in apoptotic processes in the HDMEC after CAP treatment. These results were independent of the CAP device. Both the migration and tube formation of HDMEC were significant inhibited after CAP-treatment. No malignant effects could be demonstrated by the CAP treatment on a non-malignant cell line. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Isoquinolinamine FX-9 Exhibits Anti-Mitotic Activity in Human and Canine Prostate Carcinoma Cell Lines
    (Basel : Molecular Diversity Preservation International, 2019) Schille, Jan Torben; Nolte, Ingo; Packeiser, Eva-Maria; Wiesner, Laura; Hein, Jens Ingo; Weiner, Franziska; Wu, Xiao-Feng; Beller, Matthias; Junghanss, Christian; Escobar, Hugo Murua
    Current therapies are insufficient for metastatic prostate cancer (PCa) in men and dogs. As human castrate-resistant PCa shares several characteristics with the canine disease, comparative evaluation of novel therapeutic agents is of considerable value for both species. Novel isoquinolinamine FX-9 exhibits antiproliferative activity in acute lymphoblastic leukemia cell lines but has not been tested yet on any solid neoplasia type. In this study, FX-9's mediated effects were characterized on two human (PC-3, LNCaP) and two canine (CT1258, 0846) PCa cell lines, as well as benign solid tissue cells. FX-9 significantly inhibited cell viability and induced apoptosis with concentrations in the low micromolar range. Mediated effects were highly comparable between the PCa cell lines of both species, but less pronounced on non-malignant chondrocytes and fibroblasts. Interestingly, FX-9 exposure also leads to the formation and survival of enlarged multinucleated cells through mitotic slippage. Based on the results, FX-9 acts as an anti-mitotic agent with reduced cytotoxic activity in benign cells. The characterization of FX-9-induced effects on PCa cells provides a basis for in vivo studies with the potential of valuable transferable findings to the benefit of men and dogs. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    A Neutrophil Proteomic Signature in Surgical Trauma Wounds
    (Basel : Molecular Diversity Preservation International, 2018-3-7) Bekeschus, Sander; Lackmann, Jan-Wilm; Gümbel, Denis; Napp, Matthias; Schmidt, Anke; Wende, Kristian
    Non-healing wounds continue to be a clinical challenge for patients and medical staff. These wounds have a heterogeneous etiology, including diabetes and surgical trauma wounds. It is therefore important to decipher molecular signatures that reflect the macroscopic process of wound healing. To this end, we collected wound sponge dressings routinely used in vacuum assisted therapy after surgical trauma to generate wound-derived protein profiles via global mass spectrometry. We confidently identified 311 proteins in exudates. Among them were expected targets belonging to the immunoglobulin superfamily, complement, and skin-derived proteins, such as keratins. Next to several S100 proteins, chaperones, heat shock proteins, and immune modulators, the exudates presented a number of redox proteins as well as a discrete neutrophil proteomic signature, including for example cathepsin G, elastase, myeloperoxidase, CD66c, and lipocalin 2. We mapped over 200 post-translational modifications (PTMs; cysteine/methionine oxidation, tyrosine nitration, cysteine trioxidation) to the proteomic profile, for example, in peroxiredoxin 1. Investigating manually collected exudates, we confirmed presence of neutrophils and their products, such as microparticles and fragments containing myeloperoxidase and DNA. These data confirmed known and identified less known wound proteins and their PTMs, which may serve as resource for future studies on human wound healing.
  • Item
    Blood–Brain Barrier, Lymphatic Clearance, and Recovery: Ariadne’s Thread in Labyrinths of Hypotheses
    (Basel : Molecular Diversity Preservation International, 2018) Semyachkina-Glushkovskaya, Oxana; Postnov, Dmitry; Kurths, Jürgen
    The peripheral lymphatic system plays a crucial role in the recovery mechanisms after many pathological changes, such as infection, trauma, vascular, or metabolic diseases. The lymphatic clearance of different tissues from waste products, viruses, bacteria, and toxic proteins significantly contributes to the correspondent recovery processes. However, understanding of the cerebral lymphatic functions is a challenging problem. The exploration of mechanisms of lymphatic communication with brain fluids as well as the role of the lymphatic system in brain drainage, clearance, and recovery is still in its infancy. Here we review novel concepts on the anatomy and physiology of the lymphatics in the brain, which warrant a substantial revision of our knowledge about the role of lymphatics in the rehabilitation of the brain functions after neural pathologies. We discuss a new vision on the connective bridge between the opening of a blood–brain barrier and activation of the meningeal lymphatic clearance. The ability to stimulate the lymph flow in the brain, is likely to play an important role in developing future innovative strategies in neurorehabilitation therapy.
  • Item
    Enhanced growth of lapine anterior cruciate ligament-derived fibroblasts on scaffolds embroidered from poly(L-lactide-co-ε-caprolactone) and polylactic acid threads functionalized by fluorination and hexamethylene diisocyanate cross-linked collagen foams
    (Basel : Molecular Diversity Preservation International, 2020) Gögele, Clemens; Hahn, Judith; Elschner, Cindy; Breier, Annette; Schröpfer, Michaela; Prade, Ina; Meyer, Michael; Schulze-Tanzil, Gundula
    Reconstruction of ruptured anterior cruciate ligaments (ACLs) is limited by the availability and donor site morbidity of autografts. Hence, a tissue engineered graft could present an alternative in the future. This study was undertaken to determine the performance of lapine (L) ACL-derived fibroblasts on embroidered poly(l-lactide-co-e-caprolactone) (P(LA-CL)) and polylactic acid (PLA) scaffolds in regard to a tissue engineering approach for ACL reconstruction. Surface modifications of P(LA-CL)/PLA by gas-phase fluorination and cross-linking of a collagen foam using either ethylcarbodiimide (EDC) or hexamethylene diisocyanate (HMDI) were tested regarding their influence on cell adhesion, growth and gene expression. The experiments were performed using embroidered P(LA-CL)/PLA scaffolds that were seeded dynamically or statically with LACL-derived fibroblasts. Scaffold cytocompatibility, cell survival, numbers, metabolic activity, ultrastructure and sulfated glycosaminoglycan (sGAG) synthesis were evaluated. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of collagen type I (COL1A1), decorin (DCN), tenascin C (TNC), Mohawk (MKX) and tenomodulin (TNMD). All tested scaffolds were highly cytocompatible. A significantly higher cellularity and larger scaffold surface areas colonized by cells were detected in HMDI cross-linked and fluorinated scaffolds compared to those cross-linked with EDC or without any functionalization. By contrast, sGAG synthesis was higher in controls. Despite the fact that the significance level was not reached, gene expressions of ligament extracellular matrix components and differentiation markers were generally higher in fluorinated scaffolds with cross-linked collagen foams. LACL-derived fibroblasts maintained their differentiated phenotype on fluorinated scaffolds supplemented with a HMDI cross-linked collagen foam, making them a promising tool for ACL tissue engineering. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Employing Nanostructured Scaffolds to Investigate the Mechanical Properties of Adult Mammalian Retinae Under Tension
    (Basel : Molecular Diversity Preservation International, 2020) Juncheed, Kantida; Kohlstrunk, Bernd; Friebe, Sabrina; Dallacasagrande, Valentina; Maurer, Patric; Reichenbach, Andreas; Mayr, Stefan G.; Zink, Mareike
    Numerous eye diseases are linked to biomechanical dysfunction of the retina. However, the underlying forces are almost impossible to quantify experimentally. Here, we show how biomechanical properties of adult neuronal tissues such as porcine retinae can be investigated under tension in a home-built tissue stretcher composed of nanostructured TiO2 scaffolds coupled to a self-designed force sensor. The employed TiO2 nanotube scaffolds allow for organotypic long-term preservation of adult tissues ex vivo and support strong tissue adhesion without the application of glues, a prerequisite for tissue investigations under tension. In combination with finite element calculations we found that the deformation behavior is highly dependent on the displacement rate which results in Young’s moduli of (760–1270) Pa. Image analysis revealed that the elastic regime is characterized by a reversible shear deformation of retinal layers. For larger deformations, tissue destruction and sliding of retinal layers occurred with an equilibration between slip and stick at the interface of ruptured layers, resulting in a constant force during stretching. Since our study demonstrates how porcine eyes collected from slaughterhouses can be employed for ex vivo experiments, our study also offers new perspectives to investigate tissue biomechanics without excessive animal experiments. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Sleep as a Novel Biomarker and a Promising Therapeutic Target for Cerebral Small Vessel Disease: A Review Focusing on Alzheimer’s Disease and the Blood-Brain Barrier
    (Basel : Molecular Diversity Preservation International, 2020) Semyachkina-Glushkovskaya, Oxana; Postnov, Dmitry; Penzel, Thomas; Kurths, Jürgen
    Cerebral small vessel disease (CSVD) is a leading cause of cognitive decline in elderly people and development of Alzheimer’s disease (AD). Blood–brain barrier (BBB) leakage is a key pathophysiological mechanism of amyloidal CSVD. Sleep plays a crucial role in keeping health of the central nervous system and in resistance to CSVD. The deficit of sleep contributes to accumulation of metabolites and toxins such as beta-amyloid in the brain and can lead to BBB disruption. Currently, sleep is considered as an important informative platform for diagnosis and therapy of AD. However, there are no effective methods for extracting of diagnostic information from sleep characteristics. In this review, we show strong evidence that slow wave activity (SWA) (0–0.5 Hz) during deep sleep reflects glymphatic pathology, the BBB leakage and memory deficit in AD. We also discuss that diagnostic and therapeutic targeting of SWA in AD might lead to be a novel era in effective therapy of AD. Moreover, we demonstrate that SWA can be pioneering non-invasive and bed–side technology for express diagnosis of the BBB permeability. Finally, we review the novel data about the methods of detection and enhancement of SWA that can be biomarker and a promising therapy of amyloidal CSVD and CSVD associated with the BBB disorders. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Reaction of 1-propanol with Ozone in Aqueous Media
    (Basel : Molecular Diversity Preservation International, 2019) Reisz, Erika; Tekle-Röttering, Agnes; Naumov, Sergej; Schmidt, Winfried; Schmidt, Torsten C.
    The main aim of this work is to substantiate the mechanism of 1-propanol oxidation by ozone in aqueous solution when the substrate is present in large excess. Further goals are assessment of the products, their formation yields as well as the kinetic parameters of the considered reaction. The reaction of ozone with 1-propanol in aqueous solution occurs via hydride transfer, H-abstraction and insertion. Of these three mechanisms, the largest share is for hydride transfer. This implies the extraction of an hydride ion from the activated C-H group by O3 according to reaction: (C2H5)(H)(HO)C-H + O3 ?[(C2H5)(H)(HO)C-H+O3?]cage ?(C2H5)(H)(HO)C+ + HO3 -. The experimentally determined products and their overall formation yields with respect to ozone are: propionaldehyde-(60 ± 3)%, propionic acid-(27.4 ± 1.0)%, acetaldehyde-(4.9 ± 0.3)%, acetic acid-(0.3 ± 0.1)%, formaldehyde-(1.0 ± 0.1)%, formic acid-(4.6 ± 0.3)%, hydrogen peroxide- (11.1 ± 0.3)% and hydroxyl radical-(9.8 ± 0.3)%. The reaction of ozone with 1-propanol in aqueous media follows a second order kinetics with a reaction rate constant of (0.64±0.02)M-1·s-1 atpH = 7 and 23 °C. The dependence of the second order rate constant on temperature is described by the equation: ln kII = (27.17 ± 0.38)-(8180 ± 120) × T-1, which gives the activation energy, Ea = (68 ± 1) kJ mol-1 and pre-exponential factor, A = (6.3 ± 2.4) × 1011 M-1 s-1. The nature of products, their yields and the kinetic data can be used in water treatment. The fact that the hydride transfer is the main pathway in the 1-propanol/ozone system can probably be transferred on other systems in which the substrate is characterized by C-H active sites only. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.