Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

A new model of meteoric calcium in the mesosphere and lower thermosphere

2018-10-16, Plane, John M. C., Feng, Wuhu, Gómez Martín, Juan Carlos, Gerding, Michael, Raizada, Shikha

Meteoric ablation produces layers of metal atoms in the mesosphere and lower thermosphere (MLT). It has been known for more than 30 years that the Ca atom layer is depleted by over 2 orders of magnitude compared with Na, despite these elements having nearly the same elemental abundance in chondritic meteorites. In contrast, the Ca+ ion abundance is depleted by less than a factor of 10. To explain these observations, a large database of neutral and ion–molecule reaction kinetics of Ca species, measured over the past decade, was incorporated into the Whole Atmosphere Community Climate Model (WACCM). A new meteoric input function for Ca and Na, derived using a chemical ablation model that has been tested experimentally with a Meteoric Ablation Simulator, shows that Ca ablates almost 1 order of magnitude less efficiently than Na. WACCM-Ca simulates the seasonal Ca layer satisfactorily when compared with lidar observations, but tends to overestimate Ca+ measurements made by rocket mass spectrometry and lidar. A key finding is that CaOH and CaCO3 are very stable reservoir species because they are involved in essentially closed reaction cycles with O2 and O. This has been demonstrated experimentally for CaOH, and in this study for CaCO3 using electronic structure and statistical rate theory. Most of the neutral Ca is therefore locked in these reservoirs, enabling rapid loss through polymerization into meteoric smoke particles, and this explains the extreme depletion of Ca.

Loading...
Thumbnail Image
Item

NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

2018-1-29, Sinnhuber, Miriam, Berger, Uwe, Funke, Bernd, Nieder, Holger, Reddmann, Thomas, Stiller, Gabriele, Versick, Stefan, von Clarmann, Thomas, Wissing, Jan Maik

We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top. Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002–2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1–2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5–1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar winter, ranging from 10–50 % during solar maximum to 2–10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

Loading...
Thumbnail Image
Item

Is the near-spherical shape the "new black" for smoke?

2020, Gialitaki, Anna, Tsekeri, Alexandra, Amiridis, Vassilis, Ceolato, Romain, Paulien, Lucas, Kampouri, Anna, Gkikas, Antonis, Solomos, Stavros, Marinou, Eleni, Haarig, Moritz, Baars, Holger, Ansmann, Albert, Lapyonok, Tatyana, Lopatin, Anton, Dubovik, Oleg, Groß, Silke, Wirth, Martin, Tsichla, Maria, Tsikoudi, Ioanna, Balis, Dimitris

We examine the capability of near-sphericalshaped particles to reproduce the triple-wavelength particle linear depolarization ratio (PLDR) and lidar ratio (LR) values measured over Europe for stratospheric smoke originating from Canadian wildfires. The smoke layers were detected both in the troposphere and the stratosphere, though in the latter case the particles presented PLDR values of almost 18% at 532 nm as well as a strong spectral dependence from the UV to the near-IR wavelength. Although recent simulation studies of rather complicated smoke particle morphologies have shown that heavily coated smoke aggregates can produce large PLDR, herein we propose a much simpler model of compact near-spherical smoke particles. This assumption allows for the reproduction of the observed intensive optical properties of stratospheric smoke, as well as their spectral dependence. We further examine whether an extension of the current Aerosol Robotic Network (AERONET) scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke cases associated with enhanced PLDR. Results of our study illustrate the fact that triple-wavelength PLDR and LR lidar measurements can provide us with additional insight when it comes to particle characterization. © 2020 Author(s).

Loading...
Thumbnail Image
Item

Solar 27-day signatures in standard phase height measurements above central Europe

2019, von Savigny, Christian, Peters, Dieter H.W., Entzian, Günter

We report on the effect of solar variability at the 27-day and the 11-year timescales on standard phase heightmeasurements in the ionospheric D region carried out in cen-tral Europe. Standard phase height corresponds to the re-flection height of radio waves (for constant solar zenith dis-tance) in the ionosphere near 80 km altitude, where NO isionized by solar Lyman-αradiation. Using the superposedepoch analysis (SEA) method, we extract statistically highlysignificant solar 27-day signatures in standard phase heights.The 27-day signatures are roughly inversely correlated to so-lar proxies, such as the F10.7 cm radio flux or the Lyman-αflux. The sensitivity of standard phase height change to so-lar forcing at the 27-day timescale is found to be in goodagreement with the sensitivity for the 11-year solar cycle,suggesting similar underlying mechanisms. The amplitude ofthe 27-day signature in standard phase height is larger duringsolar minimum than during solar maximum, indicating thatthe signature is not only driven by photoionization of NO. Weidentified statistical evidence for an influence of ultra-longplanetary waves on the quasi 27-day signature of standardphase height in winters of solar minimum periods.

Loading...
Thumbnail Image
Item

Gravity waves excited during a minor sudden stratospheric warming

2018-9-7, Dörnbrack, Andreas, Gisinger, Sonja, Kaifler, Natalie, Portele, Tanja Christina, Bramberger, Martina, Rapp, Markus, Gerding, Michael, Söder, Jens, Žagar, Nedjeljka, Jelić, Damjan

An exceptionally deep upper-air sounding launched from Kiruna airport (67.82∘ N, 20.33∘ E) on 30 January 2016 stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. Upward-propagating inertia-gravity waves in the upper stratosphere and downward-propagating modes in the lower stratosphere indicated a region of gravity wave generation in the stratosphere. Two-dimensional wavelet analysis was applied to vertical time series of temperature fluctuations in order to determine the vertical propagation direction of the stratospheric gravity waves in 1-hourly high-resolution meteorological analyses and short-term forecasts. The separation of upward- and downward-propagating waves provided further evidence for a stratospheric source of gravity waves. The scale-dependent decomposition of the flow into a balanced component and inertia-gravity waves showed that coherent wave packets preferentially occurred at the inner edge of the Arctic polar vortex where a sub-vortex formed during the minor SSW.

Loading...
Thumbnail Image
Item

Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region

2020, Stober, Gunter, Baumgarten, Kathrin, McCormack, John P., Brown, Peter, Czarnecki, Jerry

Recent studies have shown that day-to-day variability of the migrating semidiurnal solar (SW2) tide within the mesosphere and lower thermosphere (MLT) is a key driver of anomalies in the thermosphere-ionosphere system. Here, we study the variability in both the amplitude and phase of SW2 using meteor radar wind and lidar temperature observations at altitudes of 75-110 km as well as wind and temperature output from the Navy Global Environmental Model-High Altitude (NAVGEM-HA), a high-altitude meteorological analysis system. Application of a new adaptive spectral filter technique to both local radar wind observations and global NAVGEM-HA analyses offers an important cross-validation of both data sets and makes it possible to distinguish between migrating and non-migrating tidal components, which is difficult using local measurements alone. Comparisons of NAVGEM-HA, meteor radar and lidar observations over a 12-month period show that the meteorological analyses consistently reproduce the seasonal as well as day-to-day variability in mean winds, mean temperatures and SW2 features from the ground-based observations. This study also examines in detail the day-to-day variability in SW2 during two sudden stratospheric warming, events that have been implicated in producing ionospheric anomalies. During this period, both meteor radar and NAVGEM-HA winds show a significant phase shift and amplitude modulation, but no signs of coupling to the lunar tide as previous studies have suggested. Overall, these findings demonstrate the benefit of combining global high-altitude meteorological analyses with ground-based observations of the MLT region to better understand the tidal variability in the atmosphere. © 2020 Author(s).

Loading...
Thumbnail Image
Item

Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements

2019, Marinou, Eleni, Tesche, Matthias, Nenes, Athanasios, Ansmann, Albert, Schrod, Jann, Mamali, Dimitra, Tsekeri, Alexandra, Pikridas, Michael, Baars, Holger, Engelmann, Ronny, Voudouri, Kalliopi-Artemis, Solomos, Stavros, Sciare, Jean, Groß, Silke, Ewald, Florian, Amiridis, Vassilis

Aerosols that are efficient ice-nucleating particles (INPs) are crucial for the formation of cloud ice via heterogeneous nucleation in the atmosphere. The distribution of INPs on a large spatial scale and as a function of height determines their impact on clouds and climate. However, in situ measurements of INPs provide sparse coverage over space and time. A promising approach to address this gap is to retrieve INP concentration profiles by combining particle concentration profiles derived by lidar measurements with INP efficiency parameterizations for different freezing mechanisms (immersion freezing, deposition nucleation). Here, we assess the feasibility of this new method for both ground-based and spaceborne lidar measurements, using in situ observations collected with unmanned aerial vehicles (UAVs) and subsequently analyzed with the FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment) INP counter from an experimental campaign at Cyprus in April 2016. Analyzing five case studies we calculated the cloud-relevant particle number concentrations using lidar measurements (n250,dry with an uncertainty of 20 % to 40 % and Sdry with an uncertainty of 30 % to 50 %), and we assessed the suitability of the different INP parameterizations with respect to the temperature range and the type of particles considered. Specifically, our analysis suggests that our calculations using the parameterization of Ullrich et al. (2017) (applicable for the temperature range −50 to −33 ∘C) agree within 1 order of magnitude with the in situ observations of nINP; thus, the parameterization of Ullrich et al. (2017) can efficiently address the deposition nucleation pathway in dust-dominated environments. Additionally, our calculations using the combination of the parameterizations of DeMott et al. (2015, 2010) (applicable for the temperature range −35 to −9 ∘C) agree within 2 orders of magnitude with the in situ observations of INP concentrations (nINP) and can thus efficiently address the immersion/condensation pathway of dust and nondust particles. The same conclusion is derived from the compilation of the parameterizations of DeMott et al. (2015) for dust and Ullrich et al. (2017) for soot.

Loading...
Thumbnail Image
Item

Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE

2019, Toledano, Carlos, Torres, Benjamín, Velasco-Merino, Cristian, Althausen, Dietrich, Groß, Silke, Wiegner, Matthias, Weinzierl, Bernadett, Gasteiger, Josef, Ansmann, Albert, González, Ramiro, Mateos, David, Farrel, David, Müller, Thomas, Haarig, Moritz, Cachorro, Victoria E.

The Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June-July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study. © 2019 All rights reserved.

Loading...
Thumbnail Image
Item

Megacity and local contributions to regional air pollution: An aircraft case study over London

2020, Ashworth, Kirsti, Bucci, Silvia, Gallimore, Peter J., Lee, Junghwa, Nelson, Beth S., Sanchez-Marroquín, Alberto, Schimpf, Marina B., Smith, Paul D., Drysdale, Will S., Hopkins, Jim R., Lee, James D., Pitt, Joe R., Di Carlo, Piero, Krejci, Radovan, McQuaid, James B.

In July 2017 three research flights circumnavigating the megacity of London were conducted as a part of the STANCO training school for students and early career researchers organised by EUFAR (European Facility for Airborne Research). Measurements were made from the UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146-301 atmospheric research aircraft with the aim to sample, characterise and quantify the impact of megacity outflow pollution on air quality in the surrounding region. Conditions were extremely favourable for airborne measurements, and all three flights were able to observe clear pollution events along the flight path. A small change in wind direction provided sufficiently different air mass origins over the 2 d such that a distinct pollution plume from London, attributable marine emissions and a double-peaked dispersed area of pollution resulting from a combination of local and transported emissions were measured. We were able to analyse the effect of London emissions on air quality in the wider region and the extent to which local sources contribute to pollution events. The background air upwind of London was relatively clean during both days; concentrations of CO were 88-95 ppbv, total (measured) volatile organic compounds (VOCs) were 1.6-1.8 ppbv and NOx was 0.7- 0.8 ppbv. Downwind of London, we encountered elevations in all species with CO>100 ppbv, VOCs 2.8-3.8 ppbv, CH4>2080 ppbv and NOx>4 ppbv, and peak concentrations in individual pollution events were higher still. Levels of O3 were inversely correlated with NOx during the first flight, with O3 concentrations of 37 ppbv upwind falling to 26 ppbv in the well-defined London plume. Total pollutant fluxes from London were estimated through a vertical plane downwind of the city. Our calculated CO2 fluxes are within the combined uncertainty of those estimated previously, but there was a greater disparity in our estimates of CH4 and CO. On the second day, winds were lighter and downwind O3 concentrations were elevated to 39-43 ppbv (from 32 to 35 ppbv upwind), reflecting the contribution of more aged pollution to the regional background. Elevations in pollutant concentrations were dispersed over a wider area than the first day, although we also encountered a number of clear transient enhancements from local sources. This series of flights demonstrated that even in a region of megacity outflow, such as the south-east of the UK, local fresh emissions and more distant UK sources of pollution can all contribute substantially to pollution events. In the highly complex atmosphere around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales and atmospheric dynamics are further complicated by the urban heat island, the use of pollutant ratios to track and determine the ageing of air masses may not be valid. The individual sources must therefore all be well-characterised and constrained to understand air quality around megacities such as London. Research aircraft offer that capability through targeted sampling of specific sources and longitudinal studies monitoring trends in emission strength and profiles over time. © 2020 Copernicus GmbH. All rights reserved.