Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Cobalt-based nanoparticles prepared from MOF-carbon templates as efficient hydrogenation catalysts

2018, Murugesan, Kathiravan, Senthamarai, Thirusangumurugan, Sohail, Manzar, Alshammari, Ahmad S., Pohl, Marga-Martina, Beller, Matthias, Jagadeesh, Rajenahally V.

The development of efficient and selective nanostructured catalysts for industrially relevant hydrogenation reactions continues to be an actual goal of chemical research. In particular, the hydrogenation of nitriles and nitroarenes is of importance for the production of primary amines, which constitute essential feedstocks and key intermediates for advanced chemicals, life science molecules and materials. Herein, we report the preparation of graphene shell encapsulated Co3O4- and Co-nanoparticles supported on carbon by the template synthesis of cobalt-terephthalic acid MOF on carbon and subsequent pyrolysis. The resulting nanoparticles create stable and reusable catalysts for selective hydrogenation of functionalized and structurally diverse aromatic, heterocyclic and aliphatic nitriles, and as well as nitro compounds to primary amines (>65 examples). The synthetic and practical utility of this novel non-noble metal-based hydrogenation protocol is demonstrated by upscaling several reactions to multigram-scale and recycling of the catalyst.

Loading...
Thumbnail Image
Item

Ultra-small cobalt nanoparticles from molecularly-defined Co-salen complexes for catalytic synthesis of amines

2020, Senthamarai, Thirusangumurugan, Chandrashekhar, Vishwas G., Gawande, Manoj B., Kalevaru, Narayana V., Zbořil, Radek, Kamer, Paul C.J., Jagadeesh, Rajenahally V., Beller, Matthias

We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-N,N′-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines. This journal is © The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

ZnO Nanoparticles Encapsulated in Nitrogen-Doped Carbon Material and Silicalite-1 Composites for Efficient Propane Dehydrogenation

2019, Zhao, Dan, Li, Yuming, Han, Shanlei, Zhang, Yaoyuan, Jiang, Guiyuan, Wang, Yajun, Guo, Ke, Zhao, Zhen, Xu, Chunming, Li, Ranjia, Yu, Changchun, Zhang, Jian, Ge, Binghui, Kondratenko, Evgenii V.

Chemistry; Catalysis; Nanoparticles © 2019 The Author(s)Non-oxidative propane dehydrogenation (PDH)is an attractive reaction from both an industrial and a scientific viewpoint because it allows direct large-scale production of propene and fundamental analysis of C-H activation respectively. The main challenges are related to achieving high activity, selectivity, and on-stream stability of environment-friendly and cost-efficient catalysts without non-noble metals. Here, we describe an approach for the preparation of supported ultrasmall ZnO nanoparticles (2–4 nm, ZnO NPs)for high-temperature applications. The approach consists of encapsulation of NPs into a nitrogen-doped carbon (NC)layer in situ grown from zeolitic imidazolate framework-8 on a Silicalite-1 support. The NC layer was established to control the size of ZnO NPs and to hinder their loss to a large extent at high temperatures. The designed catalysts exhibited high activity, selectivity, and on-stream stability in PDH. Propene selectivity of about 90% at 44.4% propane conversion was achieved at 600°C after nearly 6 h on stream. © 2019 The Author(s)