Search Results

Now showing 1 - 10 of 3687
Loading...
Thumbnail Image
Item

Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines

2020, Hahn, Veronika, Mikolasch, Annett, Weitemeyer, Josephine, Petters, Sebastian, Davids, Timo, Lalk, Michael, Lackmann, Jan-Wilm, Schauer, Frieder

The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.

Loading...
Thumbnail Image
Item

Intermolecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt)

2019, Joksch, M., Spannenberg, A., Beweries, T.

In the crystal structure of the isostructural title compounds, namely {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridopalladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridoplatinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an interaction of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.

Loading...
Thumbnail Image
Item

Self-Regenerating Soft Biophotovoltaic Devices

2018, Qiu, Xinkai, Castañeda Ocampo, Olga, de Vries, Hendrik W., van Putten, Maikel, Loznik, Mark, Herrmann, Andreas, Chiechi, Ryan C.

This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms. © 2018 American Chemical Society.

Loading...
Thumbnail Image
Item

Rapid isolation and identification of pneumonia associated pathogens from sputum samples combining an innovative sample preparation strategy and array-based detection

2019, Pahlow, Susanne, Lehniger, Lydia, Hentschel, Stefanie, Seise, Barbara, Braun, Sascha D., Ehricht, Ralf, Berg, Albrecht, Popp, Jürgen, Weber, Karina

With this study, an innovative and convenient enrichment and detection strategy for eight clinically relevant pneumonia pathogens, namely, Acinetobacter baumannii, Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae is introduced. Bacteria were isolated from sputum samples with amine-modified particles exploiting pH-dependent electrostatic interactions between bacteria and the functionalized particle surface. Following this, an asymmetric polymerase chain reaction as well as subsequent stringent array-based hybridization with specific complementary capture probes were performed. Finally, results were visualized by an enzyme-induced silver nanoparticle deposition, providing stable endpoint signals and consequently an easy detection possibility. The assay was optimized using spiked samples of artificial sputum with different strains of the abovementioned bacterial species. Furthermore, actual patient sputum samples with S. pneumoniae were successfully analyzed. The presented approach offers great potential for the urgent need of a fast, specific, and reliable isolation and identification platform for important pneumonia pathogens, covering the complete process chain from sample preparation up to array-based detection within only 4 h.With this study, an innovative and convenient enrichment and detection strategy for eight clinically relevant pneumonia pathogens, namely, Acinetobacter baumannii, Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae is introduced. Bacteria were isolated from sputum samples with amine-modified particles exploiting pH-dependent electrostatic interactions between bacteria and the functionalized particle surface. Following this, an asymmetric polymerase chain reaction as well as subsequent stringent array-based hybridization with specific complementary capture probes were performed. Finally, results were visualized by an enzyme-induced silver nanoparticle deposition, providing stable endpoint signals and consequently an easy detection possibility. The assay was optimized using spiked samples of artificial sputum with different strains of the abovementioned bacterial species. Furthermore, actual patient sputum samples with S. pneumoniae were successfully analyzed. The presented approach offers great potential for the urgent need of a fast, specific, and reliable isolation and identification platform for important pneumonia pathogens, covering the complete process chain from sample preparation up to array-based detection within only 4 h.

Loading...
Thumbnail Image
Item

Trend detection in river flow indices in Poland

2018, Piniewski, Mikołaj, Marcinkowski, Paweł, Kundzewicz, Zbigniew W.

The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly ‘no trend’ results. However, the spatial gradient is apparent only for the data for the period 1981–2016 rather than for 1956–2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.

Loading...
Thumbnail Image
Item

Segregated Network Polymer Composites with High Electrical Conductivity and Well Mechanical Properties based on PVC, P(VDFTFE), UHMWPE, and rGO

2020, Shiyanova, Kseniya A., Gudkov, Maksim V., Gorenberg, Arkady Ya, Rabchinskii, Maxim K., Smirnov, Dmitry A., Shapetina, Maria A., Gurinovich, Tatiana D., Goncharuk, Galina P., Kirilenko, Demid A., Bazhenov, Sergey L., Melnikov, Valery P.

The formation of a segregated network structure (wittingly uneven distribution of a filler) is one of the most promising strategies for the fabrication of electrically conductive polymer composites at present. However, the simultaneous achievement of high values of electrical conductivity with the retention of well mechanical properties within this approach remains a great challenge. Here, by means of X-ray photoelectron spectra (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectra, scanning electron microscopy (SEM), dielectric spectroscopy, and compression engineering stress-strain curve analysis, we have studied the effect of a segregated network structure on the electrical conductivity and mechanical properties of a set of polymer composites. The composites were prepared by applying graphene oxide (GO) with ultralarge basal plane size (up to 150 μm) onto the surface of polymer powder particles, namely, poly(vinyl chloride) (PVC), poly(vinylidene fluoride-co-tetrafluoroethylene) (P(VDF-TFE)), and ultrahigh-molecular-weight poly(ethylene) (UHMWPE) with the subsequent GO reduction and composite hot pressing. A strong dependence of the segregated network polymer composites' physical properties on the polymer matrix was demonstrated. Particularly, 12 orders of magnitude rise of the polymers' electrical conductivity up to 0.7 S/m was found upon the incorporation of the reduced GO (rGO). A 17% increase in the P(VDF-TFE) elastic modulus filled by 1 wt % of rGO was observed. Fracture strength of PVC/rGO at 0.5 wt % content of the filler was demonstrated to decrease by fourfold. At the same time, the change in strength was not significant for P(VDF-TFE) and UHMWPE composites in comparison with pure polymers. Our results show a promise to accelerate the development of new composites for energy applications, such as metal-free supercapacitor plates and current collectors of lithium-ion batteries, bipolar plates of proton-exchange membrane fuel cells, antistatic elements of various electronic devices, etc. © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Mineral dust in Central Asia: Combining lidar and other measurements during the Central Asian dust experiment (CADEX)

2018, Althausen, Dietrich, Hofer, Julian, Abdullaev, Sabur, Makhmudov, Abduvosit, Baars, Holger, Engelmann, Ronny, Wadinga Fomba, Khanneh, Müller, Konrad, Schettler, Georg, Klüser, Lars, Kandler, Konrad, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Mineral dust needs to be characterized comprehensively since it contributes to the climate change in Tajikistan / Central Asia. Lidar results from the measurements of mineral dust during CADEX are compared with results of sun photometer measurements, satellite-based measurements, and chemical analysis of ground samples. Although the dust is often advected from far-range sources, it impacts on the local conditions considerably.

Loading...
Thumbnail Image
Item

Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging

2020, García-Álvarez, Rafaela, Chen, Lisa, Nedilko, Alexander, Sánchez-Iglesias, Ana, Rix, Anne, Lederle, Wiltrud, Pathak, Vertika, Lammers, Twan, von Plessen, Gero, Kostarelos, Kostas, Liz-Marzán, Luis M., Kuehne, Alexander J.C., Chigrin, Dmitry N.

Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Dehydroabietylamine-Based Cellulose Nanofibril Films: A New Class of Sustainable Biomaterials for Highly Efficient, Broad-Spectrum Antimicrobial Effects

2019, Hassan, Ghada, Forsman, Nina, Wan, Xing, Keurulainen, Leena, Bimbo, Luis M., Johansson, Leena-Sisko, Sipari, Nina, Yli-Kauhaluoma, Jari, Zimmermann, Ralf, Stehl, Susanne, Werner, Carsten, Saris, Per E.J., Österberg, Monika, Moreira, Vânia M.

The design of antimicrobial surfaces as integral parts of advanced biomaterials is nowadays a high research priority, as the accumulation of microorganisms on surfaces inflicts substantial costs on the health and industry sectors. At present, there is a growing interest in designing functional materials from polymers abundant in nature, such as cellulose, that combine sustainability with outstanding mechanical properties and economic production. There is also the need to find suitable replacements for antimicrobial silver-based agents due to environmental toxicity and spread of resistance to metal antimicrobials. Herein we report the unprecedented decoration of cellulose nanofibril (CNF) films with dehydroabietylamine 1 (CNF-CMC-1), to give an innovative contact-active surface active against Gram-positive and Gram-negative bacteria including the methicillin-resistant S. aureus MRSA14TK301, with low potential to spread resistance and good biocompatibility, all achieved with low surface coverage. CNF-CMC-1 was particularly effective against S. aureus ATCC12528, causing virtually complete reduction of the total cells from 10 5 colony forming units (CFU)/mL bacterial suspensions, after 24 h of contact. This gentle chemical modification of the surface of CNF fully retained the beneficial properties of the original film, including moisture buffering and strength, relevant in many potential applications. Our originally designed surface represents a new class of ecofriendly biomaterials that optimizes the performance of CNF by adding antimicrobial properties without the need for environmentally toxic silver. © Copyright 2019 American Chemical Society.

Loading...
Thumbnail Image
Item

Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy

2020, Stiebing, Clara, Jahn, Izabella J., Schmitt, Michael, Keijzer, Nanda, Kleemann, Robert, Kiliaan, Amanda J., Drexler, Wolfgang, Leitgeb, Rainer A., Popp, Jürgen

The presence of biomarkers characteristic for Alzheimer's disease in the retina is a controversial topic. Raman spectroscopy offers information on the biochemical composition of tissues. Thus, it could give valuable insight into the diagnostic value of retinal analysis. Within the present study, retinas of a double transgenic mouse model, that expresses a chimeric mouse/human amyloid precursor protein and a mutant form of human presenilin 1, and corresponding control group were subjected to ex vivo Raman imaging. The Raman data recorded on cross sections of whole eyes highlight the layered structure of the retina in a label-free manner. Based on the Raman information obtained from en face mounted retina samples, a discrimination between healthy and Alzheimer's disease retinal tissue can be done with an accuracy of 85.9%. For this a partial least squares-linear discriminant analysis was applied. Therefore, although no macromolecular changes in form of, i.e., amyloid beta plaques, can be noticed based on Raman spectroscopy, subtle biochemical changes happening in the retina could lead to Alzheimer's disease identification. ©