Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54

2020, Beer, Christof G., Hendricks, Johannes, Righi, Mattia, Heinold, Bernd, Tegen, Ina, Groß, Silke, Sauer, Daniel, Walser, Adrian, Weinzierl, Bernadett

It was hypothesized that using mineral dust emission climatologies in global chemistry climate models (GCCMs), i.e. prescribed monthly-mean dust emissions representative of a specific year, may lead to misrepresentations of strong dust burst events. This could result in a negative bias of model dust concentrations compared to observations for these episodes. Here, we apply the aerosol microphysics submodel MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, third generation) as part of the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model. We employ two different representations of mineral dust emissions for our model simulations: (i) a prescribed monthly-mean climatology of dust emissions representative of the year 2000 and (ii) an online dust parametrization which calculates wind-driven mineral dust emissions at every model time step. We evaluate model results for these two dust representations by comparison with observations of aerosol optical depth from ground-based station data. The model results show a better agreement with the observations for strong dust burst events when using the online dust representation compared to the prescribed dust emissions setup. Furthermore, we analyse the effect of increasing the vertical and horizontal model resolution on the mineral dust properties in our model. We compare results from simulations with T42L31 and T63L31 model resolution (2.8∘×2.8∘ and 1.9∘×1.9∘ in latitude and longitude, respectively; 31 vertical levels) with the reference setup (T42L19). The different model versions are evaluated against airborne in situ measurements performed during the SALTRACE mineral dust campaign (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment, June–July 2013), i.e. observations of dust transported from the Sahara to the Caribbean. Results show that an increased horizontal and vertical model resolution is able to better represent the spatial distribution of airborne mineral dust, especially in the upper troposphere (above 400 hPa). Additionally, we analyse the effect of varying assumptions for the size distribution of emitted dust but find only a weak sensitivity concerning these changes. The results of this study will help to identify the model setup best suited for future studies and to further improve the representation of mineral dust particles in EMAC-MADE3.

Loading...
Thumbnail Image
Item

Marine organic matter in the remote environment of the Cape Verde islands-an introduction and overview to the MarParCloud campaign

2020, van Pinxteren, Manuela, Fomba, KhannehWadinga, Triesch, Nadja, Stolle, Christian, Wurl, Oliver, Bahlmann, Enno, Gong, Xianda, Voigtländer, Jens, Wex, Heike, Robinson, Tiera-Brandy, Barthel, Stefan, Zeppenfeld, Sebastian, Hoffmann, Erik Hans, Roveretto, Marie, Li, Chunlin, Grosselin, Benoit, Daële, Veronique, Senf, Fabian, van Pinxteren, Dominik, Manzi, Malena, Zabalegui, Nicolás, Frka, Sanja, Gašparović, Blaženka, Pereira, Ryan, Li, Tao, Wen, Liang, Li, Jiarong, Zhu, Chao, Chen, Hui, Chen, Jianmin, Fiedler, Björn, von Tümpling, Wolf, Read, Katie Alana, Punjabi, Shalini, Lewis, Alastair Charles, Hopkins, James Roland, Carpenter, Lucy Jane, Peeken, Ilka, Rixen, Tim, Schulz-Bull, Detlef, Mong, María Eugenia, Mellouki, Abdelwahid, George, Christian, Stratmann, Frank, Herrmann, Hartmut

The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September-October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation-and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean-atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecularweight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited. © Author(s) 2020.