Search Results

Now showing 1 - 10 of 17
  • Item
    Macroscopic Self-Evolution of Dynamic Hydrogels to Create Hollow Interiors
    (Weinheim : Wiley-VCH Verlag, 2020) Han, L.; Zheng, Y.; Luo, H.; Feng, J.; Engstler, R.; Xue, L.; Jing, G.; Deng, X.; del Campo, A.; Cui, J.
    A solid-to-hollow evolution in macroscopic structures is challenging in synthetic materials. A fundamentally new strategy is reported for guiding macroscopic, unidirectional shape evolution of materials without compromising the material's integrity. This strategy is based on the creation of a field with a “swelling pole” and a “shrinking pole” to drive polymers to disassemble, migrate, and resettle in the targeted region. This concept is demonstrated using dynamic hydrogels containing anchored acrylic ligands and hydrophobic long alkyl chains. Adding water molecules and ferric ions (Fe3+) to induce a swelling–shrinking field transforms the hydrogels from solid to hollow. The strategy is versatile in the generation of various closed hollow objects (for example, spheres, helix tubes, and cubes with different diameters) for different applications.
  • Item
    Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections
    (Weinheim : Wiley-VCH Verlag, 2020) Ho, D.-K.; Murgia, X.; De Rossi, C.; Christmann, R.; Hüfner de Mello Martins, A.G.; Koch, M.; Andreas, A.; Herrmann, J.; Müller, R.; Empting, M.; Hartmann, R.W.; Desmaele, D.; Loretz, B.; Couvreur, P.; Lehr, C.-M.
    Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
  • Item
    Quinoidal Azaacenes: 99 % Diradical Character
    (Weinheim : Wiley-VCH Verlag, 2020) Intorp, S.N.; Hodecker, M.; Müller, M.; Tverskoy, O.; Rosenkranz, M.; Dmitrieva, E.; Popov, A.A.; Rominger, F.; Freudenberg, J.; Dreuw, A.; Bunz, U.H.F.
    Quinoidal azaacenes with almost pure diradical character (y=0.95 to y=0.99) were synthesized. All compounds exhibit paramagnetic behavior investigated by EPR and NMR spectroscopy, and SQUID measurements, revealing thermally populated triplet states with an extremely low-energy gap ΔEST′ of 0.58 to 1.0 kcal mol−1. The species are persistent in solution (half-life≈14–21 h) and in the solid state they are stable for weeks.
  • Item
    Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release
    (Weinheim : Wiley-VCH Verlag, 2020) Xu, H.; Medina-Sánchez, M.; Schmidt, O.G.
    An integrated system combining a magnetically-driven micromotor and a synthetized protein-based hyaluronic acid (HA) microflake is presented for the in situ selection and transport of multiple motile sperm cells (ca. 50). The system appeals for targeted sperm delivery in the reproductive system to assist fertilization or to deliver drugs. The binding mechanism between the HA microflake and sperm relies on the interactions between HA and the corresponding sperm HA receptors. Once sperm are captured within the HA microflake, the assembly is trapped and transported by a magnetically-driven helical microcarrier. The trapping of the sperm-microflake occurs by a local vortex induced by the microcarrier during rotation-translation under a rotating magnetic field. After transport, the microflake is enzymatically hydrolyzed by local proteases, allowing sperm to escape and finally reach the target location. This cargo-delivery system represents a new concept to transport not only multiple motile sperm but also other actively moving biological cargoes.
  • Item
    Liquid-Phase Electron Microscopy for Soft Matter Science and Biology
    (Weinheim : Wiley-VCH Verlag, 2020) Wu, H.; Friedrich, H.; Patterson, J.P.; Sommerdijk, N.A.J.M.; de Jonge, N.
    Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
  • Item
    Selective Construction of C−C and C=C Bonds by Manganese Catalyzed Coupling of Alcohols with Phosphorus Ylides
    (Weinheim : Wiley-VCH Verlag, 2020) Liu X.; Werner T.
    Herein, we report the manganese catalyzed coupling of alcohols with phosphorus ylides. The selectivity in the coupling of primary alcohols with phosphorus ylides to form carbon-carbon single (C−C) and carbon-carbon double (C=C) bonds can be controlled by the ligands. In the conversion of more challenging secondary alcohols with phosphorus ylides the selectivity towards the formation of C−C vs. C=C bonds can be controlled by the reaction conditions, namely the amount of base. The scope and limitations of the coupling reactions were thoroughly evaluated by the conversion of 21 alcohols and 15 ylides. Notably, compared to existing methods, which are based on precious metal complexes as catalysts, the present catalytic system is based on earth abundant manganese catalysts. The reaction can also be performed in a sequential one-pot reaction generating the phosphorus ylide in situ followed manganese catalyzed C−C and C=C bond formation. Mechanistic studies suggest that the C−C bond was generated via a borrowing hydrogen pathway and the C=C bond formation followed an acceptorless dehydrogenative coupling pathway. (Figure presented.). © 2020 The Authors. Advanced Synthesis & Catalysis published by Wiley-VCH GmbH
  • Item
    Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction
    (Weinheim : Wiley-VCH Verlag, 2019) Marx, Maximilian; Mele, Andrea; Spannenberg, Anke; Steinlechner, Christoph; Junge, Henrik; Schollhammer, Philippe; Beller, Matthias
    Reproducibility of photocatalytic reactions, especially when conducted on small scale for improved turnover numbers with in situ formed catalysts can prove challenging. Herein, we showcase the problematic reproducibility on the example of attractive photocatalytic CO2 reduction utilizing [FeFe] hydrogenase mimics. These Fe complexes, well-known for their application in proton reduction reactions, were combined with a heteroleptic Cu photosensitizer and produced CO/H2/HCO2H mixtures of variable constitution. However, the reactions indicated a poor reproducibility, even when conducted with well-defined complexes. Based on our experience, we make suggestions for scientists working in the field of photocatalysis on how to address and report the reproducibility of novel photocatalytic reaction protocols. In addition, we would like to highlight the importance of studying reproducibility of novel reaction protocols, especially in the fields of photocatalytic water splitting and CO2 reduction, where TONs are widely used as the comparable measure for catalytic activity. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    PNPN-H in Comparison to other PNP, PNPN and NPNPN Ligands for the Chromium Catalyzed Selective Ethylene Oligomerization
    (Weinheim : Wiley-VCH Verlag, 2019) Rosenthal, Uwe
    Many examples exist for the chromium catalyzed selective ethylene oligomerization in which the influence of ligands is essential for the formation of products. Regarding the tri- and tetramerization to 1-hexene or 1-octene mostly PNP ligands are responsible for the tetra- and some of such modified ligands for the trimerization. A very special case in these reactions are PNPN−H ligands, showing in most cases highly selective trimerization of ethylene to 1-hexene. In this review all existing published information about these PNPN−H ligands is accumulated and compared to some other related PNP, PNPN and NPNPN ligands in the chromium catalyzed selective ethylene oligomerization with respect to the switch from tetra- to trimerization and back by different substituent pattern of PNP ligand. Mechanistic information and arguments are collected to explain the switch from tetra- to trimerization and back by substitution of functional groups in classical PNP to PNPN−H ligands as a result of mono- and dinuclear catalytic species. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Impact of Al Activators on Structure and Catalytic Performance of Cr Catalysts in Homogeneous Ethylene Oligomerization : A Multitechnique in situ/operando Study
    (Weinheim : Wiley-VCH Verlag, 2019) Grauke, Reni; Schepper, Rahel; Rabeah, Jabor; Schoch, Roland; Bentrup, Ursula; Bauer, Matthias; Brückner, Angelika
    The effect of different AlR3 activators (R=methyl, ethyl, isobutyl, n-octyl) has been studied in comparison to modified methylaluminoxane (MMAO) by operando EPR as well as by in situ UV-vis, ATR-IR and XANES/EXAFS spectroscopy during oligomerization of ethylene at 20 bar and 40 °C with a homogeneous Cr complex catalyst formed in situ upon mixing a Cr(acac)3 precursor, a Ph2PN(iPr)PPh2 ligand (PNP) and the activator. Coordination of PNP to Cr(acac)3 is initiated only in the presence of an activator. Highest 1-octene productivity (detected during operando EPR measurements) was obtained with MMAO which promotes bidentate coordination of the ligand to form an active (PNP)CrII(CH3)2 chelate complex. Rising bulkiness of R in AlR3 leads to only monodentate coordination of PNP to the Cr center by one P atom and increasing reduction to CrI to a maximum extend of around 30 % for AlOct3. This lowers the catalytic performance, which is mainly governed by the mode of PNP coordination rather than by the CrI content. ©2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Conversion of γ-Valerolactone to Ethyl Valerate over Metal Promoted Ni/ZSM-5 Catalysts : Influence of Ni0/Ni2+ Heterojunctions on Activity and Product Selectivity
    (Weinheim : Wiley-VCH Verlag, 2019) Velisoju, Vijay Kumar; Jampaiah, Deshetti; Gutta, Naresh; Bentrup, Ursula; Brückner, Angelika; Bhargava, Suresh K.; Akula, Venugopal
    Promoter (Cr, Mo and W) modified Ni/ZSM-5 catalysts were explored in the vapor phase conversion of γ-valerolactone (GVL) to ethyl valerate (EV; gasoline blender) at atmospheric pressure. Among the three different promoters (Cr, Mo and W) tested the Mo-modified catalyst was found to be the best candidate. In addition, this catalyst was found to be stable up to 50 h reaction time with an insignificant decrease in activity. The good catalytic performance is related to an optimal ratio of acid and hydrogenation functions provided by Ni2+ and Ni0, respectively. In situ FTIR spectroscopic studies revealed a strong adsorption of GVL on all catalysts which quickly reacts with dosed ethanol by formation of EV, most pronounced on the Mo-modified catalyst, while VA was identified as side product. These findings suggest the preferred GVL ring opening by cracking the C−O bond on the methyl side of the GVL molecule on this type of catalysts leading to pentenoic acid as intermediate, which is quickly hydrogenated and esterified. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.