Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Stable 15N isotopes in fine and coarse urban particulate matter

2021, Wiedenhaus, Hanna, Ehrnsperger, Laura, Klemm, Otto, Strauss, Harald

Particulate nitrogen has far-reaching negative effects on human health and the environment, and effective strategies for reducing it require understanding its sources and formation processes. To learn about these factors, we recorded size-resolved nitrogen isotope ratios (δ15N) of total particulate N at an urban site in northwest Germany during a four-week measuring campaign. We observed a steady decrease in δ15N when going from fine to coarse particles, with values between +18 ‰ and −2 ‰. This difference based on particle size is caused by different isotope fractionation processes during particle formation: The fine particles contain ammonium nitrate, which is formed in an equilibrium process, leading to an enrichment of 15N. Moreover, fine particles are more reactive due to their larger surface areas and relatively long residence times in the atmosphere, which leads to an additional enrichment of 15N; a key step of this process likely occurs when the ammonium particles interact with ammonia from agricultural sources. In contrast to fine particles, coarse particles are formed by direct absorption of HNO3 on preexisting particles; the HNO3 stems from traffic emissions of NOx and subsequent oxidation in the atmospheric gas phase. Because only a small amount of isotope fractionation is associated with non-equilibrium processes during phase transitions, there is less 15N enrichment in the coarse particles. Overall, nitrogen isotopes clearly reflect the different formation processes of fine and coarse aerosol particles. © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.

Loading...
Thumbnail Image
Item

Fiber-integrated hollow-core light cage for gas spectroscopy

2021, Jang, Bumjoon, Gargiulo, Julian, Kim, Jisoo, Bürger, Johannes, Both, Steffen, Lehmann, Hartmut, Wieduwilt, Torsten, Weiss, Thomas, Maier, Stefan A., Schmidt, Markus A.

Interfacing integrated on-chip waveguides with spectroscopic approaches represents one research direction within current photonics aiming at reducing geometric footprints and increasing device densities. Particularly relevant is to connect chip-integrated waveguides with established fiber-based circuitry, opening up the possibility for a new class of devices within the field of integrated photonics. Here, one attractive waveguide is the on-chip light cage, confining and guiding light in a low-index core through the anti-resonance effect. This waveguide, implemented via 3D nanoprinting and reaching nearly 100% overlap of mode and material of interest, uniquely provides side-wise access to the core region through the open spaces between the cage strands, drastically reducing gas diffusion times. Here, we extend the capabilities of the light cage concept by interfacing light cages and optical fibers, reaching a fully fiber-integrated on-chip waveguide arrangement with its spectroscopic capabilities demonstrated here on the example of tunable diode laser absorption spectroscopy of ammonia. Controlling and optimizing the fiber circuitry integration have been achieved via automatic alignment in etched v-grooves on silicon chips. This successful device integration via 3D nanoprinting highlights the fiber-interfaced light cage to be an attractive waveguide platform for a multitude of spectroscopy-related fields, including bio-analytics, lab-on-chip photonic sensing, chemistry, and quantum metrology. © 2021 Author(s).

Loading...
Thumbnail Image
Item

Evidence of the dominant production mechanism of ammonia in a hydrogen plasma with parts per million of nitrogen

2021, Ellis, J., Köpp, D., Lang, N., van Helden, J. H.

Absolute ground state atomic hydrogen densities were measured, by the utilization of two-photon absorption laser induced fluorescence, in a low-pressure electron cyclotron resonance plasma as a function of nitrogen admixtures - 0 to 5000 ppm. At nitrogen admixtures of 1500 ppm and higher, the spectral distribution of the fluorescence changes from a single Gaussian to a double Gaussian distribution; this is due to a separate, nascent contribution arising from the photolysis of an ammonia molecule. At nitrogen admixtures of 5000 ppm, the nascent contribution becomes the dominant contribution at all investigated pressures. Thermal loading experiments were conducted by heating the chamber walls to different temperatures; this showed a decrease in the nascent contributions with increasing temperature. This is explained by considering how the temperature influences recombination coefficients, and from which, it can be stated that the Langmuir-Hinshelwood recombination mechanism is dominant over the Eley-Rideal mechanism.