Search Results

Now showing 1 - 3 of 3
  • Item
    Patterning and control of the nanostructure in plasma thin films with acoustic waves: mechanical vs. electrical polarization effects
    (Cambridge : RSC Publ., 2021) García-Valenzuela, Aurelio; Fakhfouri, Armaghan; Oliva-Ramírez, Manuel; Rico-Gavira, Victor; Rojas, Teresa Cristina; Alvarez, Rafael; Menzel, Siegfried B.; Palmero, Alberto; Winkler, Andreas; González-Elipe, Agustín R.
    Nanostructuration and 2D patterning of thin films are common strategies to fabricate biomimetic surfaces and components for microfluidic, microelectronic or photonic applications. This work presents the fundamentals of a surface nanotechnology procedure for laterally tailoring the nanostructure and crystalline structure of thin films that are plasma deposited onto acoustically excited piezoelectric substrates. Using magnetron sputtering as plasma technique and TiO2 as case example, it is demonstrated that the deposited films depict a sub-millimetre 2D pattern that, characterized by large lateral differences in nanostructure, density (up to 50%), thickness, and physical properties between porous and dense zones, reproduces the wave features distribution of the generated acoustic waves (AW). Simulation modelling of the AW propagation and deposition experiments carried out without plasma and under alternative experimental conditions reveal that patterning is not driven by the collision of ad-species with mechanically excited lattice atoms of the substrate, but emerges from their interaction with plasma sheath ions locally accelerated by the AW-induced electrical polarization field developed at the substrate surface and growing film. The possibilities of the AW activation as a general approach for the tailored control of nanostructure, pattern size, and properties of thin films are demonstrated through the systematic variation of deposition conditions and the adjustment of AW operating parameters.
  • Item
    Curled cation structures accelerate the dynamics of ionic liquids
    (Cambridge : RSC Publ., 2021) Rauber, Daniel; Philippi, Frederik; Kuttich, Björn; Becker, Julian; Kraus, Tobias; Hunt, Patricia; Welton, Tom; Hempelmann, Rolf; Kay, Christopher W.M.
    Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids – slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation–anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure–property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure–property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.
  • Item
    Influence of Controlled Epoxidation of an Asymmetric Styrene/Butadiene Star Block Copolymer on Structural and Mechanical Properties
    (Basel : MDPI, 2020) Khatiwada, Shankar P.; Staudinger, Ulrike; Jehnichen, Dieter; Heinrich, Gert; Adhikari, Rameshwar
    The chemical modification (namely the epoxidation) of a star shaped block copolymer (BCP) based on polystyrene (PS) and polybutadiene (PB) and its effect on structural and mechanical properties of the polymer were investigated. Epoxidation degrees of 37 mol%, 58 mol%, and 82 mol% were achieved by the reaction of the copolymer with meta-chloroperoxy benzoic acid (m-CPBA) under controlled conditions. The BCP structure was found to change from lamellae-like to mixed-type morphologies for intermediate epoxidation level while leading to quite ordered cylindrical structures for the higher level of chemical modification. As a consequence, the glass transition temperature (Tg) of the soft PB component of the BCP shifted towards significantly higher temperature. A clear increase in tensile modulus and tensile strength with a moderate decrease in elongation at break was observed. The epoxidized BCPs are suitable as reactive templates for the fabrication of nanostructured thermosetting resins.