Search Results

Now showing 1 - 10 of 46
  • Item
    Kaskadennutzung von Lignocellulose : LX-Verfahren trifft auf B. coagulans
    (Heidelberg : Spektrum, 2020) Schroedter, Linda; Streffer, Friedrich; Streffer, Katrin; Unger, Peter; Venus, Joachim
    Investigating alternatives for petrobased substrates, lignocellulose is an interesting yet complex feedstock that offers various possibilities for the design of new and sustainable chemical routes. The novel energy-saving LX-pretreatment was combined with thermophilic Bacillus coagulans. By this, corn straw was used in an innovative cascade obtaining biogas, lignin as well as polymerisable L-(+)-lactic acid of over 99 percents optical purity. © 2020, Die Autoren.
  • Item
    Influence of Tree Species, Harvesting Method and Storage on Energy Demand and Wood Chip Quality When Chipping Poplar, Willow and Black Locust
    (Basel : MDPI AG, 2020) Pecenka, Ralf; Lenz, Hannes; Jekayinfa, Simeon Olatayo; Hoffmann, Thomas
    The cultivation of fast-growing wood (e.g., poplar, willow or black locust) in short rotation coppices and agroforestry systems presents an opportunity for producing biomass sustainably in the agricultural sector. Cost-efficient agricultural wood production requires the availability of high-performance machinery and methods with which high-quality wood chips can be produced at low cost. It is known from harvesting short rotation coppices in practice that both the wood chip quality and the performance of the harvesting machinery depend on a variety of factors (e.g., harvesting method, weather conditions, tree species). That is why this study examines in detail the influence of the tree species (different varieties of poplar, willow, black locust) and the wood condition (fresh, stored or dried, frozen) on the specific energy demand for comminution in a stationary drum chipper and on the particle size distribution of the wood chips produced. For all the tree species examined, the chipping of dried as well as frozen stems was connected with a significant increase in the specific energy demand for comminution. An increase of 31% has been measured if poplar stems are chipped in frozen conditions (max. 6.31 kWh t−1). Drying led to an increase of 59% for dried willow stems (max. 6.67 kWh t−1). Drying and frost had also an influence on the size and quality of the wood chips, but no globally significant connection could be established for the examined tree varieties.
  • Item
    Impact of Camera Viewing Angle for Estimating Leaf Parameters of Wheat Plants from 3D Point Clouds
    (Basel : MDPI, 2021) Li, Minhui; Shamshiri, Redmond R.; Schirrmann, Michael; Weltzien, Cornelia
    Estimation of plant canopy using low-altitude imagery can help monitor the normal growth status of crops and is highly beneficial for various digital farming applications such as precision crop protection. However, extracting 3D canopy information from raw images requires studying the effect of sensor viewing angle by taking into accounts the limitations of the mobile platform routes inside the field. The main objective of this research was to estimate wheat (Triticum aestivum L.) leaf parameters, including leaf length and width, from the 3D model representation of the plants. For this purpose, experiments with different camera viewing angles were conducted to find the optimum setup of a mono-camera system that would result in the best 3D point clouds. The angle-control analytical study was conducted on a four-row wheat plot with a row spacing of 0.17 m and with two seeding densities and growth stages as factors. Nadir and six oblique view image datasets were acquired from the plot with 88% overlapping and were then reconstructed to point clouds using Structure from Motion (SfM) and Multi-View Stereo (MVS) methods. Point clouds were first categorized into three classes as wheat canopy, soil background, and experimental plot. The wheat canopy class was then used to extract leaf parameters, which were then compared with those values from manual measurements. The comparison between results showed that (i) multiple-view dataset provided the best estimation for leaf length and leaf width, (ii) among the single-view dataset, canopy, and leaf parameters were best modeled with angles vertically at -45⸰_ and horizontally at 0⸰_ (VA -45, HA 0), while (iii) in nadir view, fewer underlying 3D points were obtained with a missing leaf rate of 70%. It was concluded that oblique imagery is a promising approach to effectively estimate wheat canopy 3D representation with SfM-MVS using a single camera platform for crop monitoring. This study contributes to the improvement of the proximal sensing platform for crop health assessment. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Using SPOT-7 for Nitrogen Fertilizer Management in Oil Palm
    (Basel : MDPI AG, 2020) Yadegari, Mohammad; Shamshiri, Redmond R.; Shariff, Abdul Rashid Mohamed; Balasundram, Siva K.; Mahns, Benjamin
    Environmental concerns are growing about excessive applying nitrogen (N) fertilizers, especially in oil palm. Some conventional methods which are used to assess the amount of nutrient in oil palm are time-consuming, expensive, and involve frond destruction. Remote sensing as a non-destructive, affordable, and efficient method is widely used to detect the concentration of chlorophyll (Chl) from canopy plants using several vegetation indices (VIs) because there is an influential relation between the concentration of N in the leaves and canopy Chl content. The objectives of this research are to (i) evaluate and compare the performance of various vegetation indices (VIs) for measuring N status in oil palm canopy using SPOT-7 imagery (AIRBUS Defence & Space, Ottobrunn, Germany) to (ii) develop a regression formula that can predict the N content using satellite data to (iii) assess the regression formula performance on testing datasets by testing the coefficient of determination between the predicted and measured N contents. SPOT-7 was acquired in a 6-ha oil palm planted area in Pahang, Malaysia. To predict N content, 28 VIs based on the spectral range of SPOT-7 satellite images were evaluated. Several regression models were applied to determine the highest coefficient of determination between VIs and actual N content from leaf sampling. The modified soil-adjusted vegetation index (MSAVI) generated the highest coefficient of determination (R2 = 0.93). MTVI1 and triangular VI had the highest second and third coefficient of determination with N content (R2 = 0.926 and 0.923, respectively). The classification accuracy assessment of the developed model was evaluated using several statistical parameters such as the independent t-test, and p-value. The accuracy assessment of the developed model was more than 77%.
  • Item
    Particulate Matter Dispersion Modeling in Agricultural Applications: Investigation of a Transient Open Source Solver
    (Basel : MDPI, 2021) Janke, David; Swaminathan, Senthilathiban; Hempel, Sabrina; Kasper, Robert; Amon, Thomas
    Agriculture is a major emitter of particulate matter (PM), which causes health problems and can act as a carrier of the pathogen material that spreads diseases. The aim of this study was to investigate an open-source solver that simulates the transport and dispersion of PM for typical agricultural applications. We investigated a coupled Eulerian–Lagrangian solver within the open source software package OpenFOAM. The continuous phase was solved using transient large eddy simulations, where four different subgrid-scale turbulence models and an inflow turbulence generator were tested. The discrete phase was simulated using two different Lagrangian solvers. For the validation case of a turbulent flow of a street canyon, the flowfield could be recaptured very well, with errors of around 5% for the non-equilibrium turbulence models (WALE and dynamicKeq) in the main regions. The inflow turbulence generator could create a stable and accurate boundary layer for the mean vertical velocity and vertical profile of the turbulent Reynolds stresses R11. The validation of the Lagrangian solver showed mixed results, with partly good agreements (simulation results within the measurement uncertainty), and partly high deviations of up to 80% for the concentration of particles. The higher deviations were attributed to an insufficient turbulence regime of the used validation case, which was an experimental chamber. For the simulation case of PM dispersion from manure application on a field, the solver could capture the influence of features such as size and density on the dispersion. The investigated solver is especially useful for further investigations into time-dependent processes in the near-source area of PM sources.
  • Item
    The Effect of Diet and Farm Management on N2O Emissions from Dairy Farms Estimated from Farm Data
    (Basel : MDPI, 2021) Menardo, Simona; Lanza, Giacomo; Berg, Werner
    The N2O emissions of 21 dairy farms in Germany were evaluated to determine the feasi-bility of an estimation of emissions from farm data and the effects of the farm management, along with possible mitigation strategies. Emissions due to the application of different fertilisers, manure storage and grazing were calculated based on equations from the IPCC (Intergovernmental Panel of Climate Change) and German emission inventory. The dependence of the N2O emissions on fertiliser type and quantity, cultivated crops and diet composition was assessed via correlation analysis and linear regression. The N2O emissions ranged between 0.11 and 0.29 kg CO2eq per kilogram energy-corrected milk, with on average 60% resulting from fertilisation and less than 30% from fertiliser storage and field applications. The total emissions had a high dependence on the diet composition; in particular, on the grass/maize ratio and the protein content of the animal diet, as well as from the manure management. A linear model for the prediction of the N2O emissions based on the diet composition and the fertilisation reached a predictive power of R2 = 0.89. As a possible mitigation strategy, the substitution of slurry for solid manure would reduce N2O emissions by 40%. Feeding cows maize-based diets instead of grass-based diets could reduce them by 14%. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Limited life cycle andcost assessment for the bioconversion of lignin‐derived aromatics into adipic acid
    (New York, NY [u.a.] : Wiley, 2020) van Duuren, Jozef B.J.H.; de Wild, Paul J.; Starck, Sören; Bradtmöller, Christian; Selzer, Mirjam; Mehlmann, Kerstin; Schneider, Roland; Kohlstedt, Michael; Poblete‐Castr, Ignacio; Stolzenberger, Jessica; Barton, Nadja; Fritz, Michel; Scholl, Stephan; Venus, Joachim; Wittmann, Christoph
    Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts. © 2020 Wiley Periodicals, Inc.
  • Item
    Batch and continuous lactic acid fermentation based on a multi-substrate approach
    (Basel : MDPI AG, 2020) Olszewska-Widdrat, Agata; Alexandri, Maria; López-Gómez, José Pablo; Schneider, Roland; Venus, Joachim
    The utilisation of waste materials and industrial residues became a priority within the bioeconomy concept and the production of biobased chemicals. The aim of this study was to evaluate the feasibility to continuously produce L-lactic acid from different renewable substrates, in a multi-substrate strategy mode. Based on batch experiments observations, Bacillus coagulans A534 strain was able to continuously metabolise acid whey, sugar beet molasses, sugar bread, alfalfa press green juice and tapioca starch. Additionally, reference experiments showed its behaviour in standard medium. Continuous fermentations indicated that the highest productivity was achieved when molasses was employed with a value of 10.34 g·L−1·h−1, while the lactic acid to sugar conversion yield was 0.86 g·g−1 . This study demonstrated that LA can be efficiently produced in continuous mode regardless the substrate, which is a huge advantage in comparison to other platform chemicals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Draft Genome Sequence of a New Oscillospiraceae Bacterium Isolated from Anaerobic Digestion of Biomass
    (Washington, DC : American Society for Microbiology, 2020) Pascual, Javier; Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Ramm, Patrice; Klocke, Michael; Luschnig, Olaf; Porcar, Manuel
    Here, we present the genome sequence and annotation of the novel bacterial strain HV4-5-C5C, which may represent a new genus within the family Oscillospiraceae (order Eubacteriales). This strain is a potential keystone species in the hydrolysis of complex polymers during anaerobic digestion of biomass. © 2020 Pascual et al.
  • Item
    Airborne bacterial emission fluxes from manure-fertilized agricultural soil
    (Oxford : Wiley-Blackwell, 2020) Thiel, Nadine; Münch, Steffen; Behrens, Wiebke; Junker, Vera; Faust, Matthias; Biniasch, Oliver; Kabelitz, Tina; Siller, Paul; Boedeker, Christian; Schumann, Peter; Roesler, Uwe; Amon, Thomas; Schepanski, Kerstin; Funk, Roger; Nübel, Ulrich
    This is the first study to quantify the dependence on wind velocity of airborne bacterial emission fluxes from soil. It demonstrates that manure bacteria get aerosolized from fertilized soil more easily than soil bacteria, and it applies bacterial genomic sequencing for the first time to trace environmental faecal contamination back to its source in the chicken barn. We report quantitative, airborne emission fluxes of bacteria during and following the fertilization of agricultural soil with manure from broiler chickens. During the fertilization process, the concentration of airborne bacteria culturable on blood agar medium increased more than 600 000-fold, and 1 m3 of air carried 2.9 × 105 viable enterococci, i.e. indicators of faecal contamination which had been undetectable in background air samples. Trajectory modelling suggested that atmospheric residence times and dispersion pathways were dependent on the time of day at which fertilization was performed. Measurements in a wind tunnel indicated that airborne bacterial emission fluxes from freshly fertilized soil under local climatic conditions on average were 100-fold higher than a previous estimate of average emissions from land. Faecal bacteria collected from soil and dust up to seven weeks after fertilization could be traced to their origins in the poultry barn by genomic sequencing. Comparative analyses of 16S rRNA gene sequences from manure, soil and dust showed that manure bacteria got aerosolized preferably, likely due to their attachment to low-density manure particles. Our data show that fertilization with manure may cause substantial increases of bacterial emissions from agricultural land. After mechanical incorporation of manure into soil, however, the associated risk of airborne infection is low.