Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy

2020, Stiebing, Clara, Jahn, Izabella J., Schmitt, Michael, Keijzer, Nanda, Kleemann, Robert, Kiliaan, Amanda J., Drexler, Wolfgang, Leitgeb, Rainer A., Popp, Jürgen

The presence of biomarkers characteristic for Alzheimer's disease in the retina is a controversial topic. Raman spectroscopy offers information on the biochemical composition of tissues. Thus, it could give valuable insight into the diagnostic value of retinal analysis. Within the present study, retinas of a double transgenic mouse model, that expresses a chimeric mouse/human amyloid precursor protein and a mutant form of human presenilin 1, and corresponding control group were subjected to ex vivo Raman imaging. The Raman data recorded on cross sections of whole eyes highlight the layered structure of the retina in a label-free manner. Based on the Raman information obtained from en face mounted retina samples, a discrimination between healthy and Alzheimer's disease retinal tissue can be done with an accuracy of 85.9%. For this a partial least squares-linear discriminant analysis was applied. Therefore, although no macromolecular changes in form of, i.e., amyloid beta plaques, can be noticed based on Raman spectroscopy, subtle biochemical changes happening in the retina could lead to Alzheimer's disease identification. ©

Loading...
Thumbnail Image
Item

Background Reduction in STED-FCS Using a Bivortex Phase Mask

2020, Barbotin, Aurélien, Urbančič, Iztok, Galiani, Silvia, Eggeling, Christian, Booth, Martin

Fluorescence correlation spectroscopy (FCS) is a valuable tool to study the molecular dynamics in living cells. When used together with a super-resolution stimulated emission depletion (STED) microscope, STED-FCS can measure diffusion processes on the nanoscale in living cells. In two-dimensional (2D) systems like the cellular plasma membrane, a ring-shaped depletion focus is most commonly used to increase the lateral resolution, leading to more than 25-fold decrease in the observation volume, reaching the relevant scale of supramolecular arrangements. However, STED-FCS faces severe limitations when measuring diffusion in three dimensions (3D), largely due to the spurious background contributions from undepleted areas of the excitation focus that reduce the signal quality and ultimately limit the resolution. In this paper, we investigate how different STED confinement modes can mitigate this issue. By simulations as well as experiments with fluorescent probes in solution and in cells, we demonstrate that the coherent-hybrid (CH) depletion pattern created by a bivortex phase mask reduces background most efficiently and thus provides superior signal quality under comparable reduction of the observation volume. Featuring also the highest robustness to common optical aberrations, CH-STED can be considered the method of choice for reliable STED-FCS-based investigations of 3D diffusion on the subdiffraction scale. Copyright © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Present and future of surface-enhanced Raman scattering

2020, Langer, Judith, de Aberasturi, Dorleta Jimenez, Aizpurua, Javier, Alvarez-Puebla, Ramon A., Auguié, Baptiste, Baumberg, Jeremy J., Bazan, Guillermo C., Bell, Steven E.J., Boisen, Anja, Brolo, Alexandre G., Choo, Jaebum, Cialla-May, Dana, Deckert, Volker, Fabris, Laura, Faulds, Karen, de Abajo, F. Javier García, Goodacre, Royston, Graham, Duncan, Haes, Amanda J., Haynes, Christy L., Huck, Christian, Itoh, Tamitake, Käll, Mikael, Kneipp, Janina, Kotov, Nicholas A., Kuang, Hua, Le Ru, Eric C., Lee, Hiang Kwee, Li, Jian-Feng, Ling, Xing Yi, Maier, Stefan A., Mayerhöfer, Thomas, Moskovits, Martin, Murakoshi, Kei, Nam, Jwa-Min, Nie, Shuming, Ozaki, Yukihiro, Pastoriza-Santos, Isabel, Perez-Juste, Jorge, Popp, Juergen, Pucci, Annemarie, Reich, Stephanie, Ren, Bin, Schatz, George C., Shegai, Timur, Schlücker, Sebastian, Tay, Li-Lin, Thomas, K. George, Tian, Zhong-Qun, Van Duyne, Richard P., Vo-Dinh, Tuan, Wang, Yue, Willets, Katherine A., Xu, Chuanlai, Xu, Hongxing, Xu, Yikai, Yamamoto, Yuko S., Zhao, Bing, Liz-Marzán, Luis M.

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

Loading...
Thumbnail Image
Item

Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity

2021, Muljajew, Irina, Huschke, Sophie, Ramoji, Anuradha, Cseresnyés, Zoltán, Hoeppener, Stephanie, Nischang, Ivo, Foo, Wanling, Popp, Jürgen, Figge, Marc Thilo, Weber, Christine, Bauer, Michael, Schubert, Ulrich S., Press, Adrian T.

Dye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake in vitro as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules (Mn ≈ 20 kg mol-1), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the in vivo performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units. Although various micelles appeared similar in dynamic light scattering and cryo-transmission electron microscopy, changes in the micelles were evident from principal component analysis of the Raman spectra. Whereas an efficient stealth effect was found for micelles formed from polymers with anionically charged or thiol end groups, a hydrophobic end group altered the micelles' structure sufficiently to adapt cell-type specificity and stealth properties in the liver. © 2021 The Authors. Published by American Chemical Society.