Search Results

Now showing 1 - 10 of 28
Loading...
Thumbnail Image
Item

Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning

2021, Ernst, Owen C., Uebel, David, Kayser, Stefan, Lange, Felix, Teubner, Thomas, Boeck, Torsten

Dewetting is a ubiquitous phenomenon which can be applied to the laser synthesis of nanoparticles. A classical spinodal dewetting process takes place in four successive states, which differ from each other in their morphology. In this study all states are revealed by interaction of pulsed nanosecond UV laser light with thin gold layers with thicknesses between 1 nm and 10 nm on (100) silicon wafers. The specific morphologies of the dewetting states are discussed with particular emphasis on the state boundaries. The main parameter determining which state is formed is not the duration for which the gold remains liquid, but rather the input energy provided by the laser. This shows that each state transition has a separate measurable activation energy. The temperature during the nanosecond pulses and the duration during which the gold remains liquid was determined by simulation using the COMSOL Multiphysics® software package. Using these calculations, an accurate local temperature profile and its development over time was simulated. An analytical study of the morphologies and formed structures was performed using Minkowski measures. With aid of this tool, the laser induced structures were compared with thermally annealed samples, with perfectly ordered structures and with perfectly random structures. The results show that both, structures of the laser induced and the annealed samples, strongly resemble the perfectly ordered structures. This reveals a close relationship between these structures and suggests that the phenomenon under investigation is indeed a spinodal dewetting generated by an internal material wave function. The purposeful generation of these structures and the elucidation of the underlying mechanism of dewetting by short pulse lasers may assist the realisation of various technical elements such as nanowires in science and industry. © 2020

Loading...
Thumbnail Image
Item

Aerobic iron-catalyzed site-selective C(sp3)–C(sp3) bond cleavage in N-heterocycles

2021, Leonard, David K., Li, Wu, Rockstroh, Nils, Junge, Kathrin, Beller, Matthias

The kinetic and thermodynamic stability of C(sp3)–C(sp3) bonds makes the site-selective activation of these motifs a real synthetic challenge. In view of this, herein a site-selective method of C(sp3)–C(sp3) bond scission of amines, specifically morpholine and piperazine derivatives, using a cheap iron catalyst and air as a sustainable oxidant is reported. Furthermore, a statistical design of experiments (DoE) is used to evaluate multiple reaction parameters thereby allowing for the rapid development of a catalytic process. © 2021

Loading...
Thumbnail Image
Item

Enhancement and limits of the selective oxidation of methane to formaldehyde over V-SBA-15: Influence of water cofeed and product decomposition

2021, Kunkel, Benny, Wohlrab, Sebastian

The possibility of a selective catalytic oxidation of methane to formaldehyde has been known for decades, and positive influences of water added to the reaction mixture and ultra-short contact times have been reported. In the present work, the complexity of interdependencies has been revealed. Specific parameter variations can increase conversion and selectivity of the target product. Surprisingly, formaldehyde formation over VOx species and its decomposition in gas phase were equally dependent on the partial pressure of the added water, so that the sweet spot can only be found by varying the residence time. © 2021 The Author(s)

Loading...
Thumbnail Image
Item

Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives

2021, Li, Fei, Li, Yang, Qu, Jiang, Wang, Jinhui, Bandari, Vineeth Kumar, Zhu, Feng, Schmidt, Oliver G.

The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components. Stamping micro-supercapacitors (MSCs) with planar interdigital configurations are considered as a promising candidate to meet the requirements. In this review, recent progress of the different stamping materials and various stamping technologies are first discussed. The merits of each material, manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized, respectively. Further insights on technical difficulties and scientific challenges are finally demonstrated, including the limited thickness of printed electrodes, poor overlay accuracy and printing resolution.

Loading...
Thumbnail Image
Item

Development and characterization of a metastable Al-Mn-Ce alloy produced by laser powder bed fusion

2021, Gabrysiak, Katharina, Gustmann, Tobias, Freudenberger, Jens, Neufeld, Kai, Giebeler, Lars, Leyens, Christoph, Kühn, Uta

Laser powder bed fusion (LPBF) can help to overcome two challenges occurring by casting of metastable Al alloys: (1) the high amount of casting defects and (2) the limited part size while maintaining rapid solidification of the whole cross-section. In this study, an Al92Mn6Ce2 alloy was processed crack-free without baseplate heating by LPBF. The high cooling rate during fabrication has a significant impact on the microstructure, which was characterized by SEM, TEM and XRD. The processing through LPBF causes a high amount and a strong refinement of the intermetallic Al20Mn2Ce precipitates. This leads, compared to suction-cast specimens, to a higher hardness (180 HV 5) and a higher tolerable compressive stress (>1200 MPa) associated with a pronounced plasticity without failure up to a strain of 40%. The extraordinary mechanical properties of additively manufactured Al92Mn6Ce2 can extend the possibilities of producing novel LPBF lightweight structures for potential applications under harsh conditions.

Loading...
Thumbnail Image
Item

Nickel-catalyzed carbonylative synthesis of dihydrobenzofurans

2021, Geng, H.-Q., Wang, W., Wu, X.-F.

A nickel-catalyzed carbonylative synthesis of dihydrobenzofurans has been developed. With Mo(CO)6 as the CO source and manganese metal as the reductant, alkyl halides were reacted with aryl iodides to give the desired products in moderate to good yields. © 2020 Elsevier B.V.

Loading...
Thumbnail Image
Item

Low-power emerging memristive designs towards secure hardware systems for applications in internet of things

2021, Du, Nan, Schmidt, Heidemarie, Polian, Ilia

Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-memory computing (IMC), but there is a rising interest in using memristive technologies for security applications in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-power design techniques based on emerging memristive technology for hardware security primitives/systems are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing, their application-level impacts on the novel implementations of secret key generation, crypto functions and machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security. This review article aims to help researchers to explore security solutions, to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs.

Loading...
Thumbnail Image
Item

In situ grown palladium nanoparticles on polyester fabric as easy-separable and recyclable catalyst for Suzuki-Miyaura reaction

2021, Xu, Tiefeng, Lu, Panting, Wohlrab, Sebastian, Chen, Wenxing, Springer, Armin, Wu, Xiao-Feng, Lu, Wangyang

Palladium nanoparticles supported on low-melting polyester (Pd/LMPET) fabric were prepared through a microwave irradiation assisted method. In this way, in situ growth of Pd nanoparticles onto an easy to handle material was initiated and proceeded. The results of the characterization revealed that the palladium nanoparticles were well-dispersed on the surfaces of the polyester fibers. The Pd/LMPET fabrics were then employed in the Suzuki-Miyaura coupling. They exhibited excellent catalytic activity in ethanol/water under air atmosphere at 50 °C. Importantly, the Pd/LMPET fabrics could be separated from reaction mixture conveniently and they can still maintain good activity after 8 cycles without Pd leaching. © 2021 The Authors

Loading...
Thumbnail Image
Item

Verification of impurity-related photocatalytic activity of insulating oxide supports

2021, Kortewille, Bianca, Springer, Armin, Strunk, Jennifer

Photocatalysts composed of vanadium oxide species supported on commercial MgO and ZrO2 are investigated in selective methanol oxidation. Both support oxides are insulators, so the vanadium oxide species are expected as sole active component in photocatalysis. However, the pure supports showed considerable activity: Bare MgO was more active than MgO-supported vanadia catalysts, and ZrO2 showed intermediate activity. By various characterization methods, the presence of TiO2 (anatase) in the MgO support, and the presence of Zn, possibly as ZnO, in ZrO2 is demonstrated. The present study highlights that photocatalysts containing commercial supports must be carefully checked for impurity-related photocatalytic performance. © 2021 The Authors

Loading...
Thumbnail Image
Item

Nano energy for miniaturized systems

2021, Zhu, Minshen, Zhu, Feng, Schmidt, Oliver G.

Skin mountable electronic devices are in a high-speed development at the crossroads of materials science, electronics, and computer science. Sophisticated functions, such as sensing, actuating, and computing, are integrated into a soft electronic device that can be firmly mounted to any place of human body. These advanced electronic devices are capable of yielding abilities for us whenever they are needed and even expanding our abilities beyond their natural limitations. Despite the great promise of skin mounted electronic devices, they still lack satisfactory power supplies that are safe and continuous. This Perspective discusses the prospects of the development of energy storage devices for the next generation skin mountable electronic devices based on their unique requirements on flexibility and miniaturized size.