Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Optical Anisotropy and Momentum-Dependent Excitons in Dibenzopentacene Single Crystals

2022, Graf, Lukas, Liu, Fupin, Naumann, Marco, Roth, Friedrich, Debnath, Bipasha, Büchner, Bernd, Krupskaya, Yulia, Popov, Alexey A., Knupfer, Martin

High-quality single crystals of the organic semiconductor (1,2;8,9)-dibenzopentacene were grown via physical vapor transport. The crystal structure─unknown before─was determined by single-crystal X-ray diffraction; polarization-dependent optical absorption measurements display a large anisotropy in the ac plane of the crystals. The overall Davydov splitting is ∼110 meV, which is slightly lower than that in the close relative pentacene (120 meV). Momentum-dependent electron energy-loss spectroscopy measurements show a clear exciton dispersion of the Davydov components. An analysis of the dispersion using a simple 1D model indicates smaller electron- and hole-transfer integrals in dibenzopentacene as compared to pentacene. The spectral weight distribution of the excitation spectra is strongly momentum-dependent and demonstrates a strong momentum-dependent admixture of Frenkel excitons, charge-transfer excitons, and vibrational modes.

Loading...
Thumbnail Image
Item

On the Conduction Properties of Vertical GaN n-Channel Trench MISFETs

2021, Treidel, Eldad Bahat, Hilt, Oliver, Hoffmann, Veit, Brunner, Frank, Bickel, Nicole, Thies, Andreas, Tetzner, Kornelius, Gargouri, Hassan, Huber, Christian, Donimirski, Konstanty, Wurfl, Joachim

ON-state conductance properties of vertical GaN n -channel trench MISFETs manufactured on different GaN substrates and having different gate trench orientations are studied up to 200 °C ambient temperature. The best performing devices, with a maximum output current above 4 kA/cm 2 and an area specific ON-state resistance of 1.1 mΩ·cm 2 , are manufactured on ammonothermal GaN substrate with the gate channel parallel to the a-plane of the GaN crystal. The scalability of the devices up to 40 mm gate periphery is investigated and demonstrated. It is found that, in addition to oxide interface traps, the semiconductor border traps in the p-GaN layer limit the available mobile channel electrons and that the channel surface roughness scattering limits the channel mobility. Both strongly depend on the gate trench orientation and on the GaN substrate defect density.

Loading...
Thumbnail Image
Item

Agent-based simulations for coverage extensions in 5G networks and beyond

2022, Ghribi, Chaima, Cali, Eli, Hirsch, Christian, Jahnel, Benedikt

Device-to-device (D2D) communications is one of the key emerging technologies for the fifth generation (5G) networks and beyond. It enables direct communication between mobile users and thereby extends coverage for devices lacking direct access to the cellular infrastructure and hence enhances network capacity. D2D networks are complex, highly dynamic and will be strongly augmented by intelligence for decision making at both the edge and core of the network, which makes them particularly difficult to predict and analyze. Conventionally, D2D systems are evaluated, investigated and analyzed using analytical and probabilistic models (e.g., from stochastic geometry). However, applying classical simulation and analytical tools to such a complex system is often hard to track and inaccurate. In this paper, we present a modeling and simulation framework from the perspective of complex-systems science and exhibit an agent-based model for the simulation of D2D coverage extensions. We also present a theoretical study to benchmark our proposed approach for a basic scenario that is less complicated to model mathematically. Our simulation results show that we are indeed able to predict coverage extensions for multi-hop scenarios and quantify the effects of street-system characteristics and pedestrian mobility on the connection time of devices to the base station (BS). To our knowledge, this is the first study that applies agent-based simulations for coverage extensions in D2D.