Search Results

Now showing 1 - 10 of 14
  • Item
    Straightforward Approach for Preparing Durable Antibacterial ZnO Nanoparticle Coatings on Flexible Substrates
    (Basel : MDPI, 2022) Šutka, Andris; Mežule, Linda; Denisova, Viktorija; Meier-Haack, Jochen; Kulkarni, Akshay; Bitina, Sanda; Smits, Krisjanis; Vihodceva, Svetlana
    Flexible antibacterial materials have gained utmost importance in protection from the distribution of bacteria and viruses due to the exceptional variety of applications. Herein, we demonstrate a readily scalable and rapid single-step approach for producing durable ZnO nanoparticle antibacterial coating on flexible polymer substrates at room temperature. Substrates used are polystyrene, poly(ethylene-co-vinyl acetate) copolymer, poly(methyl methacrylate), polypropylene, high density polyethylene and a commercial acrylate type adhesive tape. The deposition was achieved by a spin-coating process using a slurry of ZnO nanoparticles in toluene. A stable modification layer was obtained when toluene was a solvent for the polymer substrates, namely polystyrene and poly(ethylene-co-vinyl acetate). These coatings show high antibacterial efficiency causing >5 log decrease in the viable counts of Gram-negative bacteria Escherichia. coli and Gram-positive bacteria Staphylococcus aureus in 120 min. Even after tapping these coated surfaces 500 times, the antibacterial properties remained unchanged, showing that the coating obtained by the presented method is very robust. In contrast to the above findings, the coatings are unstable when toluene is not a solvent for the substrate.
  • Item
    Waterborne phenolic, triazine-based porous polymer particles for the removal of toxic metal ions
    (Amsterdam : Elsevier, 2022) Borchert, Konstantin B.L.; Frenzel, Robert; Gerlach, Niklas; Reis, Berthold; Steinbach, Christine; Kohn, Benjamin; Scheler, Ulrich; Schwarz, Simona; Schwarz, Dana
    Highly functional and also highly porous materials are presenting great advantages for applications in energy storage, catalysis and separation processes, which is why a continuous development of new materials can be seen. To create a material combining the promising potential interactions of triazine groups with the electrostatic or hydrogen bonding interactions of phenolic groups, a completely new polymeric resin was synthesized. From an eco-friendly dispersion polymerization in water, a copolymer network was obtained, which includes nine hydroxyl groups and one s-triazine ring per repetition unit. The polymer forms highly porous particles with specific surface areas up to 531 ​m2/g and a negative streaming potential over a great pH range. The adsorption isotherms of Ni2+, Cd2+, and Pb2+ were studied in more detail achieving very good adsorption capacities (16 mg Ni2+/g, 24 mg Cd2+/g, and 90 mg Pb2+/g). Demonstrating excellent properties for adsorption applications. The adsorbent exhibited selectivity for the adsorption of Pb2+ over more commonly occurring but non-toxic metal ions such as Fe2+, Ca2+, Mg2+, and K+. Furthermore, reusability of the material was demonstrated by facile, quantitative desorption of adsorbed Pb2+ with a small amount of diluted HCl, circumventing organic chelators. Subsequently, adsorption was carried out without decrease in adsorption performance.
  • Item
    CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding
    (Basel : Molecular Diversity Preservation International (MDPI), 2022-2-26) Anju; Yadav, Raghvendra Singh; Pötschke, Petra; Pionteck, Jürgen; Krause, Beate; Kuřitka, Ivo; Vilčáková, Jarmila; Škoda, David; Urbánek, Pavel; Machovský, Michal; Masař, Milan; Urbánek, Michal
    CuxCo1-x Fe2O4 (x = 0.33,0.67,1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (Cu-CoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SEt) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.
  • Item
    Spiropyran/Merocyanine Amphiphile in Various Solvents: A Joint Experimental–Theoretical Approach to Photophysical Properties and Self-Assembly
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Savchenko, Vladyslav; Lomadze, Nino; Santer, Svetlana; Guskova, Olga
    This joint experimental-theoretical work focuses on molecular and photophysical properties of the spiropyran-containing amphiphilic molecule in organic and aqueous solutions. Being dissolved in tested organic solvents, the system demonstrates positive photochromism, i.e., upon UV stimulus the colorless spiropyran form is transformed into colorful merocyanine isomer. However, the aqueous solution of the amphiphile possesses a negative photochromism: the orange-red merocyanine form becomes thermodynamically more stable in water, and both UV and vis stimuli lead to the partial or complete photobleaching of the solution. The explanation of this phenomenon is given on the basis of density functional theory calculations and classical modeling including thermodynamic integration. The simulations reveal that stabilization of merocyanine in water proceeds with the energy of ca. 70 kJ mol−1, and that the Helmholtz free energy of hydration of merocyanine form is 100 kJ mol−1 lower as compared to the behavior of SP isomer in water. The explanation of such a difference lies in the molecular properties of the merocyanine: after ring-opening reaction this molecule transforms into a zwitterionic form, as evidenced by the electrostatic potential plotted around the opened form. The presence of three charged groups on the periphery of a flat conjugated backbone stimulates the self-assembly of merocyanine molecules in water, ending up with the formation of elongated associates with stack-like building blocks, as shown in molecular dynamics simulations of the aqueous solution with the concentration above critical micelle concentration. Our quantitative evaluation of the hydrophilicity switching in spiropyran/merocyanine containing surfactants may prompt the search for new systems, including colloidal and polymeric ones, aiming at remote tuning of their morphology, which could give new promising shapes and patterns for the needs of modern nanotechnology.
  • Item
    STM-induced ring closure of vinylheptafulvene molecular dipole switches on Au(111)
    (Cambridge : Royal Society of Chemistry, 2022) Au-Yeung, Kwan Ho; Kühne, Tim; Aiboudi, Oumaima; Sarkar, Suchetana; Guskova, Olga; Ryndyk, Dmitry A.; Heine, Thomas; Lissel, Franziska; Moresco, Francesca
    Dihydroazulene/vinylheptafulvene pairs are known as molecular dipole switches that undergo a ring-opening/-closure reaction by UV irradiation or thermal excitation. Herein, we show that the ring-closure reaction of a single vinylheptafulvene adsorbed on the Au(111) surface can be induced by voltage pulses from the tip of a scanning tunneling microscope. This cyclization is accompanied by the elimination of HCN, as confirmed by simulations. When inducing lateral movements by applying voltage pulses with the STM tip, we observe that the response of the single molecules changes with the ring closing reaction. This behaviour is discussed by comparing the dipole moment and the charge distribution of the open and closed forms on the surface.
  • Item
    A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles
    (Amsterdam [u.a.] : Elsevier Science, 2022) Mousavi, Seyed Rasoul; Estaji, Sara; Kiaei, Hediyeh; Mansourian-Tabaei, Mohammad; Nouranian, Sasan; Jafari, Seyed Hassan; Ruckdäschel, Holger; Arjmand, Mohammad; Khonakdar, Hossein Ali
    Epoxy (EP) resins exhibit desirable mechanical and thermal properties, low shrinkage during cuing, and high chemical resistance. Therefore, they are useful for various applications, such as coatings, adhesives, paints, etc. On the other hand, carbon nanotubes (CNT), graphene (Gr), and their derivatives have become reinforcements of choice for EP-based nanocomposites because of their extraordinary mechanical, thermal, and electrical properties. Herein, we provide an overview of the last decade's advances in research on improving the thermal and electrical conductivities of EP resin systems modified with CNT, Gr, their derivatives, and hybrids. We further report on the surface modification of these reinforcements as a means to improve the nanofiller dispersion in the EP resins, thereby enhancing the thermal and electrical conductivities of the resulting nanocomposites.
  • Item
    Nonlinear Thermopower Behaviour of N-Type Carbon Nanofibres and Their Melt Mixed Polypropylene Composites
    (Basel : MDPI, 2022-1-10) Paleo, Antonio J.; Krause, Beate; Cerqueira, Maria F.; Muñoz, Enrique; Pötschke, Petra; Rocha, Ana M.
    The temperature dependent electrical conductivity σ (T) and thermopower (Seebeck coeffi-cient) S (T) from 303.15 K (30◦ C) to 373.15 K (100◦ C) of an as-received commercial n-type vapour grown carbon nanofibre (CNF) powder and its melt-mixed polypropylene (PP) composite with 5 wt.% of CNFs have been analysed. At 30◦ C, the σ and S of the CNF powder are ~136 S m−1 and −5.1 µV K−1, respectively, whereas its PP/CNF composite showed lower conductivities and less negative S-values of ~15 S m−1 and −3.4 µV K−1, respectively. The σ (T) of both samples presents a dσ/dT < 0 character described by the 3D variable range hopping (VRH) model. In contrast, their S (T) shows a dS/dT > 0 character, also observed in some doped multiwall carbon nanotube (MWCNT) mats with nonlinear thermopower behaviour, and explained here from the contribution of impurities in the CNF structure such as oxygen and sulphur, which cause sharply varying and localized states at approximately 0.09 eV above their Fermi energy level (EF).
  • Item
    Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers
    (Basel : MDPI, 2022-10-18) Damampai, Kriengsak; Pichaiyut, Skulrat; Stöckelhuber, Klaus Werner; Das, Amit; Nakason, Charoen
    Natural rubber with 50 mol % epoxidation (ENR-50) was filled with carbon nanotubes (CNTs) and conductive carbon black (CCB) hybrid fillers with various CCB loadings of 2.5, 5.0, 7.0, 10.0 and 15.0 phr, and the compounds were mixed with ferric ion (Fe3+) as a crosslinking agent. The ENRs filled exclusively with CNTs, and CNT–CCB hybrid fillers exhibited typical curing curves at different CCB loadings, i.e., increasing torque with time and thus crosslinked networks. Furthermore, the incorporation of CNT–CCB hybrid fillers and increasing CCB loadings caused an enhancement of tensile properties (modulus and tensile strength) and crosslink densities, which are indicated by the increasing torque difference and the crosslink densities. The crosslink densities are determined by swelling and temperature scanning stress relaxation (TSSR). Increasing CCB loadings also caused a significant improvement in bound rubber content, filler–rubber interactions, thermal resistance, glass transition temperature (Tg) and electrical conductivity. A combination of 7 phr CNT and CCB with loading higher than 2.5 phr gave superior properties to ENR vulcanizates. Furthermore, the secondary CCB filler contributes to the improvement of CNT dispersion in the ENR matrix by networking the CNT capsules and forming CNT–CCB–CNT pathways and thus strong CNT–CCB networks, indicating the improvement in the tensile properties, bound rubber content and dynamic properties of the ENR composites. Moreover, higher electrical conductivity with a comparatively low percolation threshold of the hybrid composites was found as compared to the ENR filled with CNTs without CCB composite. The superior mechanical and other properties are due to the finer dispersion and even distribution of CNT–CCB hybrid fillers in the ENR matrix.
  • Item
    Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales
    (Weinheim : VCH Verl.-Ges., 2022) Schamberger, Barbara; Ziege, Ricardo; Anselme, Karine; Ben Amar, Martine; Bykowski, Michał; Castro, André P. G.; Cipitria, Amaia; Coles, Rhoslyn A.; Dimova, Rumiana; Eder, Michaela; Ehrig, Sebastian; Escudero, Luis M.; Evans, Myfanwy E.; Fernandes, Paulo R.; Fratzl, Peter; Geris, Liesbet; Gierlinger, Notburga; Hannezo, Edouard; Iglič, Aleš; Kirkensgaard, Jacob J. K.; Kollmannsberger, Philip; Kowalewska, Łucja; Kurniawan, Nicholas A.; Papantoniou, Ioannis; Pieuchot, Laurent; Pires, Tiago H. V.; Renner, Lars D.; Sageman‐Furnas, Andrew O.; Schröder‐Turk, Gerd E.; Sengupta, Anupam; Sharma, Vikas R.; Tagua, Antonio; Tomba, Caterina; Trepat, Xavier; Waters, Sarah L.; Yeo, Edwina F.; Roschger, Andreas; Bidan, Cécile M.; Dunlop, John W. C.
    Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
  • Item
    Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenes
    (Basel : MDPI, 2022) Tretsiakova-McNally, Svetlana; Baby, Aloshy; Joseph, Paul; Pospiech, Doris; Schierz, Eileen; Lederer, Albena; Arun, Malavika; Fontaine, Gaëlle
    Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-p-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and the gaseous-phase activities of the abovementioned fire retardants within the prepared co- and ter-polymers were evaluated for the first time. Pyrolysis–Gas Chromatography/Mass Spectrometry was employed to identify the volatile products formed during the thermal decomposition of the modified polymers. Benzaldehyde, α-methylstyrene, acetophenone, triethyl phosphate and styrene (monomer, dimer and trimer) were detected in the gaseous phase following the thermal cracking of fire-retardant groups and through main chain scissions. In the case of PS modified with ADEPMAE, the evolution of pyrolysis gases was suppressed by possible inhibitory actions of triethyl phosphate in the gaseous phase. The reactive modification of PS by simultaneously incorporating P- (DEAMP or DEpVBP) and N- (MI) monomeric units, in the chains of ter-polymers, resulted in a predominantly condensed-phase mode of action owing to synergistic P and N interactions. The solid-state 31P NMR spectroscopy, Scanning Electron Microscopy/Energy Dispersive Spectroscopy, Inductively-Coupled Plasma/Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy of char residues, obtained from ter-polymers, confirmed the retention of the phosphorus species in their structures.