Search Results

Now showing 1 - 5 of 5
  • Item
    Beam damage of single semiconductor nanowires during X-ray nanobeam diffraction experiments
    (Chester : IUCr, 2020) Al Hassan, Ali; Lähnemann, Jonas; Davtyan, Arman; Al-Humaidi, Mahmoud; Herranz, Jesús; Bahrami, Danial; Anjum, Taseer; Bertram, Florian; Dey, Arka Bikash; Geelhaar, Lutz; Pietsch, Ullrich
    Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 1010 s-1, the axial lattice parameter and tilt of individual GaAs/In0.2Ga0.8As/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.
  • Item
    Sample chamber for synchrotron based in-situ X-ray diffraction experiments under electric fields and temperatures between 100 K and 1250 K
    (Chester : IUCr, 2021) Nentwich, Melanie; Weigel, Tina; Richter, Carsten; Stöcker, Hartmut; Mehner, Erik; Jachalke, Sven; Novikov, Dmitri V.; Zschornak, Matthias; Meyer, Dirk C.
    Many scientific questions require X-ray experiments conducted at varying temperatures, sometimes combined with the application of electric fields. Here, a customized sample chamber developed for beamlines P23 and P24 of PETRA III at DESY to suit these demands is presented. The chamber body consists mainly of standard vacuum parts housing the heater/cooler assembly supplying a temperature range of 100 K to 1250 K and an xyz manipulator holding an electric contact needle for electric measurements at both high voltage and low current. The chamber is closed by an exchangeable hemispherical dome offering all degrees of freedom for single-crystal experiments within one hemisphere of solid angle. The currently available dome materials (PC, PS, PEEK polymers) differ in their absorption and scattering characteristics, with PEEK providing the best overall performance. The article further describes heating and cooling capabilities, electric characteristics, and plans for future upgrades of the chamber. Examples of applications are discussed.
  • Item
    A new concept for temporal gating of synchrotron X-ray pulses
    (Chester : IUCr, 2021) Schmidt, D.; Bauer, R.; Chung, S.; Novikov, D.; Sander, M.; Pudell, J.E.; Herzog, M.; Pfuetzenreuter, D.; Schwarzkopf, J.; Chernikov, R.; Gaal, P.
    A new concept for temporal gating of synchrotron X-ray pulses based on laser-induced thermal transient gratings is presented. First experimental tests of the concept yield a diffraction efficiency of 0.18%; however, the calculations indicate a theoretical efficiency and contrast of >30% and 10−5, respectively. The full efficiency of the pulse picker has not been reached yet due to a long-range thermal deformation of the sample after absorption of the excitation laser. This method can be implemented in a broad spectral range (100 eV to 20 keV) and is only minimally invasive to an existing setup.
  • Item
    The 1-Megapixel pnCCD detector for the Small Quantum Systems Instrument at the European XFEL: system and operation aspects
    (Chester : IUCr, 2021) Kuster, Markus; Ahmed, Karim; Ballak, Kai Erik; Danilevski, Cyril; Ekmedžić, Marko; Fernandes, Bruno; Gessler, Patrick; Hartmann, Robert; Hauf, Steffen; Holl, Peter; Meyer, Michael; Montaño, Jacobo; Münnich, Astrid; Ovcharenko, Yevheniy; Rennhack, Nils; Rüter, Tonn; Rupp, Daniela; Schlosser, Dieter; Setoodehnia, Kiana; Schmitt, Rüdiger; Strüder, Lothar; Tanyag, Rico Mayro P.; Ulmer, Anatoli; Yousef, Hazem
    The X-ray free-electron lasers that became available during the last decade, like the European XFEL (EuXFEL), place high demands on their instrumentation. Especially at low photon energies below 1 keV, detectors with high sensitivity, and consequently low noise and high quantum efficiency, are required to enable facility users to fully exploit the scientific potential of the photon source. A 1-Megapixel pnCCD detector with a 1024 × 1024 pixel format has been installed and commissioned for imaging applications at the Nano-Sized Quantum System (NQS) station of the Small Quantum System (SQS) instrument at EuXFEL. The instrument is currently operating in the energy range between 0.5 and 3 keV and the NQS station is designed for investigations of the interaction of intense FEL pulses with clusters, nano-particles and small bio-molecules, by combining photo-ion and photo-electron spectroscopy with coherent diffraction imaging techniques. The core of the imaging detector is a pn-type charge coupled device (pnCCD) with a pixel pitch of 75 µm × 75 µm. Depending on the experimental scenario, the pnCCD enables imaging of single photons thanks to its very low electronic noise of 3 e− and high quantum efficiency. Here an overview on the EuXFEL pnCCD detector and the results from the commissioning and first user operation at the SQS experiment in June 2019 are presented. The detailed descriptions of the detector design and capabilities, its implementation at EuXFEL both mechanically and from the controls side as well as important data correction steps aim to provide useful background for users planning and analyzing experiments at EuXFEL and may serve as a benchmark for comparing and planning future endstations at other FELs.
  • Item
    Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2020) Voss, Maren; Asmala, Eero; Bartl, Ines; Carstensen, Jacob; Conley, Daniel J.; Dippner, Joachim W.; Humborg, Christoph; Lukkari, Kaarina; Petkuviene, Jolita; Reader, Heather; Stedmon, Colin; Vybernaite-Lubiene, Irma; Wannicke, Nicola; Zilius, Mindaugas
    Coastal waters have strong gradients in dissolved organic matter (DOM) quantity and characteristics, originating from terrestrial inputs and autochthonous production. Enclosed seas with high freshwater input therefore experience high DOM concentrations and gradients from freshwater sources to more saline waters. The brackish Baltic Sea experiences such salinity gradients from east to west and from river mouths to the open sea. Furthermore, the catchment areas of the Baltic Sea are very diverse and vary from sparsely populated northern areas to densely populated southern zones. Coastal systems vary from enclosed or open bays, estuaries, fjords, archipelagos and lagoons where the residence time of DOM at these sites varies and may control the extent to which organic matter is biologically, chemically or physically modified or simply diluted with transport off-shore. Data of DOM with simultaneous measurements of dissolved organic (DO) nitrogen (N), carbon (C) and phosphorus (P) across a range of contrasting coastal systems are scarce. Here we present data from the Roskilde Fjord, Vistula and Öre estuaries and Curonian Lagoon; four coastal systems with large differences in salinity, nutrient concentrations, freshwater inflow and catchment characteristics. The C:N:P ratios of DOM of our data, despite high variability, show site specific significant differences resulting largely from differences residence time. Microbial processes seemed to have minor effects, and only in spring did uptake of DON in the Vistula and Öre estuaries take place and not at the other sites or seasons. Resuspension from sediments impacts bottom waters and the entire shallow water column in the Curonian Lagoon. Finally, our data combined with published data show that land use in the catchments seems to impact the DOC:DON and DOC:DOP ratios of the tributaries most. © 2020, The Author(s).