Search Results

Now showing 1 - 2 of 2
  • Item
    Applications of MXenes in human-like sensors and actuators
    (New York, NY [u.a.] : Springer, 2022) Pang, Jinbo; Peng, Songang; Hou, Chongyang; Wang, Xiao; Wang, Ting; Cao, Yu; Zhou, Weijia; Sun, Ding; Wang, Kai; Rümmeli, Mark H.; Cuniberti, Gianaurelio; Liu, Hong
    Human beings perceive the world through the senses of sight, hearing, smell, taste, touch, space, and balance. The first five senses are prerequisites for people to live. The sensing organs upload information to the nervous systems, including the brain, for interpreting the surrounding environment. Then, the brain sends commands to muscles reflexively to react to stimuli, including light, gas, chemicals, sound, and pressure. MXene, as an emerging two-dimensional material, has been intensively adopted in the applications of various sensors and actuators. In this review, we update the sensors to mimic five primary senses and actuators for stimulating muscles, which employ MXene-based film, membrane, and composite with other functional materials. First, a brief introduction is delivered for the structure, properties, and synthesis methods of MXenes. Then, we feed the readers the recent reports on the MXene-derived image sensors as artificial retinas, gas sensors, chemical biosensors, acoustic devices, and tactile sensors for electronic skin. Besides, the actuators of MXene-based composite are introduced. Eventually, future opportunities are given to MXene research based on the requirements of artificial intelligence and humanoid robot, which may induce prospects in accompanying healthcare and biomedical engineering applications. [Figure not available: see fulltext.]
  • Item
    Graphene transfer methods: A review
    (New York, NY [u.a.] : Springer, 2021) Ullah, Sami; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Bachmatiuk, Alicja; Tokarska, Klaudia; Trzebicka, Barbara; Fu, Lei; Rummeli, Mark H.
    Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.