Search Results

Now showing 1 - 10 of 68
  • Item
    The impact of biomass burning and aqueous-phase processing on air quality: A multi-year source apportionment study in the Po Valley, Italy
    (Katlenburg-Lindau : EGU, 2020) Paglione, Marco; Gilardoni, Stefania; Rinaldi, Matteo; Decesari, Stefano; Zanca, Nicola; Sandrini, Silvia; Giulianelli, Lara; Bacco, Dimitri; Ferrari, Silvia; Poluzzi, Vanes; Scotto, Fabiana; Trentini, Arianna; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Canonaco, Francesco; Prévôt, André S.H.; Massoli, Paola; Carbone, Claudio; Facchini, Maria Cristina; Fuzzi, Sandro
    The Po Valley (Italy) is a well-known air quality hotspot characterized by particulate matter (PM) levels well above the limit set by the European Air Quality Directive and by the World Health Organization, especially during the colder season. In the framework of Emilia-Romagna regional project "Supersito", the southern Po Valley submicron aerosol chemical composition was characterized by means of high-resolution aerosol mass spectroscopy (HR-AMS) with the specific aim of organic aerosol (OA) characterization and source apportionment. Eight intensive observation periods (IOPs) were carried out over 4 years (from 2011 to 2014) at two different sites (Bologna, BO, urban background, and San Pietro Capofiume, SPC, rural background), to characterize the spatial variability and seasonality of the OA sources, with a special focus on the cold season. On the multi-year basis of the study, the AMS observations show that OA accounts for averages of 45 ± 8 % (ranging from 33 % to 58 %) and 46 ± 7 % (ranging from 36 % to 50 %) of the total non-refractory submicron particle mass (PM1-NR) at the urban and rural sites, respectively. Primary organic aerosol (POA) comprises biomass burning (23±13 % of OA) and fossil fuel (12±7 %) contributions with a marked seasonality in concentration. As expected, the biomass burning contribution to POA is more significant at the rural site (urban / rural concentration ratio of 0.67), but it is also an important source of POA at the urban site during the cold season, with contributions ranging from 14 % to 38 % of the total OA mass. Secondary organic aerosol (SOA) contributes to OA mass to a much larger extent than POA at both sites throughout the year (69 ± 16 % and 83 ± 16 % at the urban and rural sites, respectively), with important implications for public health. Within the secondary fraction of OA, the measurements highlight the importance of biomass burning aging products during the cold season, even at the urban background site. This biomass burning SOA fraction represents 14 %-44 % of the total OA mass in the cold season, indicating that in this region a major contribution of combustion sources to PM mass is mediated by environmental conditions and atmospheric reactivity. © 2020 Author(s).
  • Item
    Is the near-spherical shape the "new black" for smoke?
    (Katlenburg-Lindau : EGU, 2020) Gialitaki, Anna; Tsekeri, Alexandra; Amiridis, Vassilis; Ceolato, Romain; Paulien, Lucas; Kampouri, Anna; Gkikas, Antonis; Solomos, Stavros; Marinou, Eleni; Haarig, Moritz; Baars, Holger; Ansmann, Albert; Lapyonok, Tatyana; Lopatin, Anton; Dubovik, Oleg; Groß, Silke; Wirth, Martin; Tsichla, Maria; Tsikoudi, Ioanna; Balis, Dimitris
    We examine the capability of near-sphericalshaped particles to reproduce the triple-wavelength particle linear depolarization ratio (PLDR) and lidar ratio (LR) values measured over Europe for stratospheric smoke originating from Canadian wildfires. The smoke layers were detected both in the troposphere and the stratosphere, though in the latter case the particles presented PLDR values of almost 18% at 532 nm as well as a strong spectral dependence from the UV to the near-IR wavelength. Although recent simulation studies of rather complicated smoke particle morphologies have shown that heavily coated smoke aggregates can produce large PLDR, herein we propose a much simpler model of compact near-spherical smoke particles. This assumption allows for the reproduction of the observed intensive optical properties of stratospheric smoke, as well as their spectral dependence. We further examine whether an extension of the current Aerosol Robotic Network (AERONET) scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke cases associated with enhanced PLDR. Results of our study illustrate the fact that triple-wavelength PLDR and LR lidar measurements can provide us with additional insight when it comes to particle characterization. © 2020 Author(s).
  • Item
    Megacity and local contributions to regional air pollution: An aircraft case study over London
    (Katlenburg-Lindau : EGU, 2020) Ashworth, Kirsti; Bucci, Silvia; Gallimore, Peter J.; Lee, Junghwa; Nelson, Beth S.; Sanchez-Marroquín, Alberto; Schimpf, Marina B.; Smith, Paul D.; Drysdale, Will S.; Hopkins, Jim R.; Lee, James D.; Pitt, Joe R.; Di Carlo, Piero; Krejci, Radovan; McQuaid, James B.
    In July 2017 three research flights circumnavigating the megacity of London were conducted as a part of the STANCO training school for students and early career researchers organised by EUFAR (European Facility for Airborne Research). Measurements were made from the UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146-301 atmospheric research aircraft with the aim to sample, characterise and quantify the impact of megacity outflow pollution on air quality in the surrounding region. Conditions were extremely favourable for airborne measurements, and all three flights were able to observe clear pollution events along the flight path. A small change in wind direction provided sufficiently different air mass origins over the 2 d such that a distinct pollution plume from London, attributable marine emissions and a double-peaked dispersed area of pollution resulting from a combination of local and transported emissions were measured. We were able to analyse the effect of London emissions on air quality in the wider region and the extent to which local sources contribute to pollution events. The background air upwind of London was relatively clean during both days; concentrations of CO were 88-95 ppbv, total (measured) volatile organic compounds (VOCs) were 1.6-1.8 ppbv and NOx was 0.7- 0.8 ppbv. Downwind of London, we encountered elevations in all species with CO>100 ppbv, VOCs 2.8-3.8 ppbv, CH4>2080 ppbv and NOx>4 ppbv, and peak concentrations in individual pollution events were higher still. Levels of O3 were inversely correlated with NOx during the first flight, with O3 concentrations of 37 ppbv upwind falling to 26 ppbv in the well-defined London plume. Total pollutant fluxes from London were estimated through a vertical plane downwind of the city. Our calculated CO2 fluxes are within the combined uncertainty of those estimated previously, but there was a greater disparity in our estimates of CH4 and CO. On the second day, winds were lighter and downwind O3 concentrations were elevated to 39-43 ppbv (from 32 to 35 ppbv upwind), reflecting the contribution of more aged pollution to the regional background. Elevations in pollutant concentrations were dispersed over a wider area than the first day, although we also encountered a number of clear transient enhancements from local sources. This series of flights demonstrated that even in a region of megacity outflow, such as the south-east of the UK, local fresh emissions and more distant UK sources of pollution can all contribute substantially to pollution events. In the highly complex atmosphere around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales and atmospheric dynamics are further complicated by the urban heat island, the use of pollutant ratios to track and determine the ageing of air masses may not be valid. The individual sources must therefore all be well-characterised and constrained to understand air quality around megacities such as London. Research aircraft offer that capability through targeted sampling of specific sources and longitudinal studies monitoring trends in emission strength and profiles over time. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region
    (Katlenburg-Lindau : EGU, 2020) Stober, Gunter; Baumgarten, Kathrin; McCormack, John P.; Brown, Peter; Czarnecki, Jerry
    Recent studies have shown that day-to-day variability of the migrating semidiurnal solar (SW2) tide within the mesosphere and lower thermosphere (MLT) is a key driver of anomalies in the thermosphere-ionosphere system. Here, we study the variability in both the amplitude and phase of SW2 using meteor radar wind and lidar temperature observations at altitudes of 75-110 km as well as wind and temperature output from the Navy Global Environmental Model-High Altitude (NAVGEM-HA), a high-altitude meteorological analysis system. Application of a new adaptive spectral filter technique to both local radar wind observations and global NAVGEM-HA analyses offers an important cross-validation of both data sets and makes it possible to distinguish between migrating and non-migrating tidal components, which is difficult using local measurements alone. Comparisons of NAVGEM-HA, meteor radar and lidar observations over a 12-month period show that the meteorological analyses consistently reproduce the seasonal as well as day-to-day variability in mean winds, mean temperatures and SW2 features from the ground-based observations. This study also examines in detail the day-to-day variability in SW2 during two sudden stratospheric warming, events that have been implicated in producing ionospheric anomalies. During this period, both meteor radar and NAVGEM-HA winds show a significant phase shift and amplitude modulation, but no signs of coupling to the lunar tide as previous studies have suggested. Overall, these findings demonstrate the benefit of combining global high-altitude meteorological analyses with ground-based observations of the MLT region to better understand the tidal variability in the atmosphere. © 2020 Author(s).
  • Item
    Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
    (Katlenburg-Lindau : EGU, 2020) Costa-Surós, Montserrat; Sourdeval, Odran; Acquistapace, Claudia; Baars, Holger; Carbajal Henken, Cintia; Genz, Christa; Hesemann, Jonas; Jimenez, Cristofer; König, Marcel; Kretzschmar, Jan; Madenach, Nils; Meyer, Catrin I.; Schrödner, Roland; Seifert, Patric; Senf, Fabian; Brueck, Matthias; Cioni, Guido; Engels, Jan Frederik; Fieg, Kerstin; Gorges, Ksenia; Heinze, Rieke; Kumar Siligam, Pavan; Burkhardt, Ulrike; Crewell, Susanne; Hoose, Corinna; Seifert, Axel; Tegen, Ina; Quaas, Johannes
    Clouds and aerosols contribute the largest uncertainty to current estimates and interpretations of the Earth's changing energy budget. Here we use a new-generation large-domain large-eddy model, ICON-LEM (ICOsahedral Non-hydrostatic Large Eddy Model), to simulate the response of clouds to realistic anthropogenic perturbations in aerosols serving as cloud condensation nuclei (CCN). The novelty compared to previous studies is that (i) the LEM is run in weather prediction mode and with fully interactive land surface over a large domain and (ii) a large range of data from various sources are used for the detection and attribution. The aerosol perturbation was chosen as peak-aerosol conditions over Europe in 1985, with more than fivefold more sulfate than in 2013. Observational data from various satellite and ground-based remote sensing instruments are used, aiming at the detection and attribution of this response. The simulation was run for a selected day (2 May 2013) in which a large variety of cloud regimes was present over the selected domain of central Europe. It is first demonstrated that the aerosol fields used in the model are consistent with corresponding satellite aerosol optical depth retrievals for both 1985 (perturbed) and 2013 (reference) conditions. In comparison to retrievals from groundbased lidar for 2013, CCN profiles for the reference conditions were consistent with the observations, while the ones for the 1985 conditions were not. Similarly, the detection and attribution process was successful for droplet number concentrations: the ones simulated for the 2013 conditions were consistent with satellite as well as new ground-based lidar retrievals, while the ones for the 1985 conditions were outside the observational range. For other cloud quantities, including cloud fraction, liquid water path, cloud base altitude and cloud lifetime, the aerosol response was small compared to their natural vari ability. Also, large uncertainties in satellite and ground-based observations make the detection and attribution difficult for these quantities. An exception to this is the fact that at a large liquid water path value (LWP > 200 g m-2), the control simulation matches the observations, while the perturbed one shows an LWP which is too large. The model simulations allowed for quantifying the radiative forcing due to aerosol-cloud interactions, as well as the adjustments to this forcing. The latter were small compared to the variability and showed overall a small positive radiative effect. The overall effective radiative forcing (ERF) due to aerosol-cloud interactions (ERFaci) in the simulation was dominated thus by the Twomey effect and yielded for this day, region and aerosol perturbation-2:6 W m-2. Using general circulation models to scale this to a global-mean present-day vs. pre-industrial ERFaci yields a global ERFaci of-0:8 W m-2 © 2020 Author(s).
  • Item
    Estimation of cloud condensation nuclei number concentrations and comparison to in situ and lidar observations during the HOPE experiments
    (Katlenburg-Lindau : EGU, 2020) Genz, Christa; Schrödner, Roland; Heinold, Bernd; Henning, Silvia; Baars, Holger; Spindler, Gerald; Tegen, Ina
    Atmospheric aerosol particles are the precondition for the formation of cloud droplets and therefore have large influence on the microphysical and radiative properties of clouds. In this work, four different methods to derive or measure number concentrations of cloud condensation nuclei (CCN) were analyzed and compared for presentday aerosol conditions: (i) a model parameterization based on simulated particle concentrations, (ii) the same parameterization based on gravimetrical particle measurements, (iii) direct CCN measurements with a CCN counter, and (iv) lidarderived and in situ measured vertical CCN profiles. In order to allow for sensitivity studies of the anthropogenic impact, a scenario to estimate the maximum CCN concentration under peak aerosol conditions of the mid-1980s in Europe was developed as well. In general, the simulations are in good agreement with the observations. At ground level, average values between 0.7 and 1:5 × 109 CCNm-3 at a supersaturation of 0.2 % were found with the different methods under present-day conditions. The discrimination of the chemical species revealed an almost equal contribution of ammonium sulfate and ammonium nitrate to the total number of CCN for present-day conditions. This was not the case for the peak aerosol scenario, in which it was assumed that no ammonium nitrate was formed while large amounts of sulfate were present, consuming all available ammonia during ammonium sulfate formation. The CCN number concentration at five different supersaturation values has been compared to the measurements. The discrepancies between model and in situ observations were lowest for the lowest (0.1 %) and highest supersaturations (0.7 %). For supersaturations between 0.3 % and 0.5 %, the model overestimated the potentially activated particle fraction by around 30 %. By comparing the simulation with observed profiles, the vertical distribution of the CCN concentration was found to be overestimated by up to a factor of 2 in the boundary layer. The analysis of the modern (year 2013) and the peak aerosol scenario (expected to be representative of the mid-1980s over Europe) resulted in a scaling factor, which was defined as the quotient of the average vertical profile of the peak aerosol and present-day CCN concentration. This factor was found to be around 2 close to the ground, increasing to around 3.5 between 2 and 5 km and approaching 1 (i.e., no difference between present-day and peak aerosol conditions) with further increasing height. © 2020 Author(s).
  • Item
    Comparison of particle number size distribution trends in ground measurements and climate models
    (Katlenburg-Lindau : EGU, 2022) Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; van Noije, Twan; O'Connor, Fiona M.; O'Dowd, Colin; Olivie, Dirk; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu
    Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  • Item
    Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
    (Katlenburg-Lindau : EGU, 2020) Allen, Robert J.; Turnock, Steven; Nabat, Pierre; Neubauer, David; Lohmann, Ulrike; Olivié, Dirk; Oshima, Naga; Michou, Martine; Wu, Tongwen; Zhang, Jie; Takemura, Toshihiko; Schulz, Michael; Tsigaridis, Kostas; Bauer, Susanne E.; Emmons, Louisa; Horowitz, Larry; Naik, Vaishali; van Noije, Twan; Bergman, Tommi; Lamarque, Jean-Francois; Zanis, Prodromos; Tegen, Ina; Westervelt, Daniel M.; Le Sager, Philippe; Good, Peter; Shim, Sungbo; O’Connor, Fiona; Akritidis, Dimitris; Georgoulias, Aristeidis K.; Deushi, Makoto; Sentman, Lori T.; John, Jasmin G.; Fujimori, Shinichiro; Collins, William J.
    It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015-2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry-climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with weak (SSP3-7.0) versus strong (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2:5) and ozone (O3) decrease by 2:20:32 ugm3 and 4:60:88 ppb, respectively (changes quoted here are for the entire 2015-2055 time period; uncertainty represents the 95% confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0:250:12K and 0:030:012mmd1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0:660:20K and 0:030:02mmd1), south Asia (0:470:16K and 0:170:09mmd1), and east Asia (0:460:20K and 0:150:06mmd1). Relatively large warming and wetting of the Arctic also occur at 0:590:36K and 0:040:02mmd1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Multiphase MCM-CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014
    (Katlenburg-Lindau : EGU, 2020) Zhu, Yanhong; Tilgner, Andreas; Hoffmann, Erik Hans; Herrmann, Hartmut; Kawamura, Kimitaka; Yang, Lingxiao; Xue, Likun; Wang, Wenxing
    Despite the high abundance of secondary aerosols in the atmosphere, their formation mechanisms remain poorly understood. In this study, the Master Chemical Mechanism (MCM) and the Chemical Aqueous-Phase Radical Mechanism (CAPRAM) are used to investigate the multiphase formation and processing of secondary aerosol constituents during the advection of air masses towards the measurement site of Mt. Tai in northern China. Trajectories with and without chemical–cloud interaction are modeled. Modeled radical and non-radical concentrations demonstrate that the summit of Mt. Tai, with an altitude of ∼1.5 km a.m.s.l., is characterized by a suburban oxidants budget. The modeled maximum gas-phase concentrations of the OH radical are 3.2×106 and 3.5×106 molec. cm−3 in simulations with and without cloud passages in the air parcel, respectively. In contrast with previous studies at Mt. Tai, this study has modeled chemical formation processes of secondary aerosol constituents under day vs. night and cloud vs. non-cloud cases along the trajectories towards Mt. Tai in detail. The model studies show that sulfate is mainly produced in simulations where the air parcel is influenced by cloud chemistry. Under the simulated conditions, the aqueous reaction of HSO−3 with H2O2 is the major contributor to sulfate formation, contributing 67 % and 60 % in the simulations with cloud and non-cloud passages, respectively. The modeled nitrate formation is higher at nighttime than during daytime. The major pathway is aqueous-phase N2O5 hydrolysis, with a contribution of 72 % when cloud passages are considered and 70 % when they are not. Secondary organic aerosol (SOA) compounds, e.g., glyoxylic, oxalic, pyruvic and malonic acid, are found to be mostly produced from the aqueous oxidations of hydrated glyoxal, hydrated glyoxylic acid, nitro-2-oxopropanoate and hydrated 3-oxopropanoic acid, respectively. Sensitivity studies reveal that gaseous volatile organic compound (VOC) emissions have a huge impact on the concentrations of modeled secondary aerosol compounds. Increasing the VOC emissions by a factor of 2 leads to linearly increased concentrations of the corresponding SOA compounds. Studies using the relative incremental reactivity (RIR) method have identified isoprene, 1,3-butadiene and toluene as the key precursors for glyoxylic and oxalic acid, but only isoprene is found to be a key precursor for pyruvic acid. Additionally, the model investigations demonstrate that an increased aerosol partitioning of glyoxal can play an important role in the aqueous-phase formation of glyoxylic and oxalic acid. Overall, the present study is the first that provides more detailed insights in the formation pathways of secondary aerosol constituents at Mt. Tai and clearly emphasizes the importance of aqueous-phase chemical processes on the production of multifunctional carboxylic acids.
  • Item
    Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke
    (Katlenburg-Lindau : EGU, 2020) Holanda, Bruna A.; Pöhlker, Mira L.; Walter, David; Saturno, Jorge; Sörgel, Matthias; Ditas, Jeannine; Ditas, Florian; Schulz, Christiane; Aurélio Franco, Marco; Wang, Qiaoqiao; Donth, Tobias; Artaxo, Paulo; Barbosa, Henrique M.J.; Borrmann, Stephan; Braga, Ramon; Brito, Joel; Cheng, Yafang; Dollner, Maximilian; Kaiser, JohannesW.; Klimach, Thomas; Knote, Christoph; Krüger, Ovid O.; Fütterer, Daniel; Lavrič, Jošt V.; Ma, Nan; Machado, Luiz A.T.; Ming, Jing; Morais, Fernando G.; Paulsen, Hauke; Sauer, Daniel; Schlager, Hans; Schneider, Johannes; Su, Hang; Weinzierl, Bernadett; Walser, Adrian; Wendisch, Manfred; Ziereis, Helmut; Zöger, Martin; Pöschl, Ulrich; Andreae, Meinrat O.; Pöhlker, Christopher
    Black carbon (BC) aerosols influence the Earth's atmosphere and climate, but their microphysical properties, spatiotemporal distribution, and long-range transport are not well constrained. This study presents airborne observations of the transatlantic transport of BC-rich African biomass burning (BB) smoke into the Amazon Basin using a Single Particle Soot Photometer (SP2) as well as several complementary techniques. We base our results on observations of aerosols and trace gases off the Brazilian coast onboard the HALO (High Altitude and LOng range) research aircraft during the ACRIDICON-CHUVA campaign in September 2014. During flight AC19 over land and ocean at the northeastern coastline of the Amazon Basin, we observed a BCrich layer at ∼ 3:5 km altitude with a vertical extension of ∼ 0:3 km. Backward trajectories suggest that fires in African grasslands, savannas, and shrublands were the main source of this pollution layer and that the observed BB smoke had undergone more than 10 d of atmospheric transport and aging over the South Atlantic before reaching the Amazon Basin. The aged smoke is characterized by a dominant accumulation mode, centered at about 130 nm, with a particle concentration of Nacc D 850±330 cm-3. The rBC particles account for ∼ 15 % of the submicrometer aerosol mass and ∼ 40 % of the total aerosol number concentration. This corresponds to a mass concentration range from 0.5 to 2 μ g m-3 (1st to 99th percentiles) and a number concentration range from 90 to 530 cm-3. Along with rBC, high cCO (150 ± 30 ppb) and cO3 (56 ± 9 ppb) mixing ratios support the biomass burning origin and pronounced photochemical aging of this layer. Upon reaching the Amazon Basin, it started to broaden and to subside, due to convective mixing and entrainment of the BB aerosol into the boundary layer. Satellite observations show that the transatlantic transport of pollution layers is a frequently occurring process, seasonally peaking in August/September. By analyzing the aircraft observations together with the long-term data from the Amazon Tall Tower Observatory (ATTO), we found that the transatlantic transport of African BB smoke layers has a strong impact on the northern and central Amazonian aerosol population during the BBinfluenced season (July to December). In fact, the early BB season (July to September) in this part of the Amazon appears to be dominated by African smoke, whereas the later BB season (October to December) appears to be dominated by South American fires. This dichotomy is reflected in pronounced changes in aerosol optical properties such as the single scattering albedo (increasing from 0.85 in August to 0.90 in November) and the BC-to-CO enhancement ratio (decreasing from 11 to 6 ng m-3 ppb-1). Our results suggest that, despite the high fraction of BC particles, the African BB aerosol acts as efficient cloud condensation nuclei (CCN), with potentially important implications for aerosol-cloud interactions and the hydrological cycle in the Amazon. © 2020 Author(s).