Search Results

Now showing 1 - 10 of 68
Loading...
Thumbnail Image
Item

Characterization of organic aerosol across the global remote troposphere: A comparison of ATom measurements and global chemistry models

2020, Hodzic, Alma, Campuzano-Jost, Pedro, Bian, Huisheng, Chin, Mian, Colarco, Peter R., Day, Douglas A., Froyd, Karl D., Heinold, Bernd, Katich, Joseph M., Jo, Duseong S., Kodros, John K., Nault, Benjamin A., Pierce, Jeffrey R., Ray, Eric, Schacht, Jacob, Schill, Gregory P., Schroder, Jason C., Schwarz, Joshua P., Sueper, Donna T., Tegen, Ina, Tilmes, Simone, Tsigaridis, Kostas, Yu, Pengfei, Jimenez, Jose L.

The spatial distribution and properties of submicron organic aerosol (OA) are among the key sources of uncertainty in our understanding of aerosol effects on climate. Uncertainties are particularly large over remote regions of the free troposphere and Southern Ocean, where very few data have been available and where OA predictions from AeroCom Phase II global models span 2 to 3 orders of magnitude, greatly exceeding the model spread over source regions. The (nearly) pole-to-pole vertical distribution of nonrefractory aerosols was measured with an aerosol mass spectrometer onboard the NASA DC-8 aircraft as part of the Atmospheric Tomography (ATom) mission during the Northern Hemisphere summer (August 2016) and winter (February 2017). This study presents the first extensive characterization of OA mass concentrations and their level of oxidation in the remote atmosphere. OA and sulfate are the major contributors by mass to submicron aerosols in the remote troposphere, together with sea salt in the marine boundary layer. Sulfate was dominant in the lower stratosphere. OA concentrations have a strong seasonal and zonal variability, with the highest levels measured in the lower troposphere in the summer and over the regions influenced by biomass burning from Africa (up to 10 μgsm-3). Lower concentrations (~ 0:1 0.3 μgsm-3) are observed in the northern middle and high latitudes and very low concentrations (< 0:1 μgsm-3) in the southern middle and high latitudes. The ATom dataset is used to evaluate predictions of eight current global chemistry models that implement a variety of commonly used representations of OA sources and chemistry, as well as of the AeroCom-II ensemble. The current model ensemble captures the average vertical and spatial distribution of measured OA concentrations, and the spread of the individual models remains within a factor of 5. These results are significantly improved over the AeroCom-II model ensemble, which shows large overestimations over these regions. However, some of the improved agreement with observations occurs for the wrong reasons, as models have the tendency to greatly overestimate the primary OA fraction and underestimate the sec-ondary fraction. Measured OA in the remote free troposphere is highly oxygenated, with organic aerosol to organic carbon (OA= OC) ratios of ~ 2.2 2.8, and is 30 % 60% more oxygenated than in current models, which can lead to significant errors in OA concentrations. The model measurement comparisons presented here support the concept of a more dynamic OA system as proposed by Hodzic et al. (2016), with enhanced removal of primary OA and a stronger production of secondary OA in global models needed to provide better agreement with observations. © 2020 IEEE Computer Society. All rights reserved.

Loading...
Thumbnail Image
Item

Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke

2022, Ansmann, Albert, Ohneiser, Kevin, Chudnovsky, Alexandra, Knopf, Daniel A., Eloranta, Edwin W., Villanueva, Diego, Seifert, Patric, Radenz, Martin, Barja, Boris, Zamorano, Félix, Jimenez, Cristofer, Engelmann, Ronny, Baars, Holger, Griesche, Hannes, Hofer, Julian, Althausen, Dietrich, Wandinger, Ulla

A record-breaking stratospheric ozone loss was observed over the Arctic and Antarctica in 2020. Strong ozone depletion occurred over Antarctica in 2021 as well. The ozone holes developed in smoke-polluted air. In this article, the impact of Siberian and Australian wildfire smoke (dominated by organic aerosol) on the extraordinarily strong ozone reduction is discussed. The study is based on aerosol lidar observations in the North Pole region (October 2019-May 2020) and over Punta Arenas in southern Chile at 53.2°S (January 2020-November 2021) as well as on respective NDACC (Network for the Detection of Atmospheric Composition Change) ozone profile observations in the Arctic (Ny-Ålesund) and Antarctica (Neumayer and South Pole stations) in 2020 and 2021. We present a conceptual approach on how the smoke may have influenced the formation of polar stratospheric clouds (PSCs), which are of key importance in the ozone-depleting processes. The main results are as follows: (a) the direct impact of wildfire smoke below the PSC height range (at 10-12 km) on ozone reduction seems to be similar to well-known volcanic sulfate aerosol effects. At heights of 10-12 km, smoke particle surface area (SA) concentrations of 5-7 μm2 cm-3 (Antarctica, spring 2021) and 6-10 μm2 cm-3 (Arctic, spring 2020) were correlated with an ozone reduction in terms of ozone partial pressure of 0.4-1.2 mPa (about 30 % further ozone reduction over Antarctica) and of 2-3.5 mPa (Arctic, 20 %-30 % reduction with respect to the long-term springtime mean). (b) Within the PSC height range, we found indications that smoke was able to slightly increase the PSC particle number and surface area concentration. In particular, a smoke-related additional ozone loss of 1-2 mPa (10 %-20 % contribution to the total ozone loss over Antarctica) was observed in the 14-23 km PSC height range in September-October 2020 and 2021. Smoke particle number concentrations ranged from 10 to 100 cm-3 and were about a factor of 10 (in 2020) and 5 (in 2021) above the stratospheric aerosol background level. Satellite observations indicated an additional mean column ozone loss (deviation from the long-term mean) of 26-30 Dobson units (9 %-10 %, September 2020, 2021) and 52-57 Dobson units (17 %-20 %, October 2020, 2021) in the smoke-polluted latitudinal Antarctic belt from 70-80°S. Copyright:

Loading...
Thumbnail Image
Item

The vertical aerosol type distribution above Israel – 2 years of lidar observations at the coastal city of Haifa

2022, Heese, Birgit, Floutsi, Athena Augusta, Baars, Holger, Althausen, Dietrich, Hofer, Julian, Herzog, Alina, Mewes, Silke, Radenz, Martin, Schechner, Yoav Y.

For the first time, vertically resolved long-term lidar measurements of the aerosol distribution were conducted in Haifa, Israel. The measurements were performed by a PollyXT multi-wavelength Raman and polarization lidar. The lidar was measuring continuously over a 2-year period from March 2017 to May 2019. The resulting data set is a series of manually evaluated lidar optical property profiles. To identify the aerosol types in the observed layers, a novel aerosol typing method that was developed at TROPOS is used. This method applies optimal estimation to a combination of lidar-derived intensive aerosol properties to determine the statistically most-likely contribution per aerosol component in terms of relative volume. A case study that shows several elevated aerosol layers illustrates this method and shows, for example, that coarse dust particles are observed up to 5ĝ€¯km height over Israel. From the whole data set, the seasonal distribution of the observed aerosol components over Israel is derived. Throughout all seasons, coarse spherical particles like sea salt and hygroscopically grown continental aerosol were observed. These particles originate from continental Europe and were transported over the Mediterranean Sea. Sea-salt particles were observed frequently due to the coastal site of Haifa. The highest contributions of coarse spherical particles are present in summer, autumn, and winter. During spring, mostly coarse non-spherical particles that are attributed to desert dust were observed. This is consistent with the distinct dust season in spring in Israel. An automated time-height-resolved air mass source attribution method identifies the origin of the dust in the Sahara and the Arabian deserts. Fine-mode spherical particles contribute significantly to the observed aerosol mixture during all seasons. These particles originate mainly from the industrial region at the bay of Haifa.

Loading...
Thumbnail Image
Item

Comparison of particle number size distribution trends in ground measurements and climate models

2022, Leinonen, Ville, Kokkola, Harri, Yli-Juuti, Taina, Mielonen, Tero, Kühn, Thomas, Nieminen, Tuomo, Heikkinen, Simo, Miinalainen, Tuuli, Bergman, Tommi, Carslaw, Ken, Decesari, Stefano, Fiebig, Markus, Hussein, Tareq, Kivekäs, Niku, Krejci, Radovan, Kulmala, Markku, Leskinen, Ari, Massling, Andreas, Mihalopoulos, Nikos, Mulcahy, Jane P., Noe, Steffen M., van Noije, Twan, O'Connor, Fiona M., O'Dowd, Colin, Olivie, Dirk, Pernov, Jakob B., Petäjä, Tuukka, Seland, Øyvind, Schulz, Michael, Scott, Catherine E., Skov, Henrik, Swietlicki, Erik, Tuch, Thomas, Wiedensohler, Alfred, Virtanen, Annele, Mikkonen, Santtu

Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.

Loading...
Thumbnail Image
Item

New particle formation and sub-10nm size distribution measurements during the A-LIFE field experiment in Paphos, Cyprus

2020, Brilke, Sophia, Fölker, Nikolaus, Kandler, Konrad, Müller, Thomas, Gong, Xianda, Peischl, Jeff, Weinzierl, Bernadett, Winkler, Paul M.

Atmospheric particle size distributions were measured in Paphos, Cyprus, during the A-LIFE (absorbing aerosol layers in a changing climate: ageing, lifetime and dynamics) field experiment from 3 to 30 April 2017. The newly developed differential mobility analyser train (DMAtrain) was deployed for the first time in an atmospheric environment for the direct measurement of the nucleation mode size range between 1.8 and 10 nm diameter. The DMA-train set-up consists of seven size channels, of which five are set to fixed particle mobility diameters and two additional diameters are obtained by alternating voltage settings in one DMA every 10 s. In combination with a conventional mobility particle size spectrometer (MPSS) and an aerodynamic particle sizer (APS) the complete atmospheric aerosol size distribution from 1.8 nm to 10 μ m was covered. The focus of the A-LIFE study was to characterize new particle formation (NPF) in the eastern Mediterranean region at a measurement site with strong local pollution sources. The nearby Paphos airport was found to be a large emission source for nucleation mode particles, and we analysed the size distribution of the airport emission plumes at approximately 500 m from the main runway. The analysis yielded nine NPF events in 27 measurement days from the combined analysis of the DMAtrain, MPSS and trace gas monitors. Growth rate calculations were performed, and a size dependency of the initial growth rate (< 10 nm) was observed for one event case. Fast changes of the sub-10 nm size distribution on a timescale of a few minutes were captured by the DMA-train measurement during early particle growth and are discussed in a second event case. In two cases, particle formation and growth were detected in the nucleation mode size range which did not exceed the 10 nm threshold. This finding implies that NPF likely occurs more frequently than estimated from studies where the lower nanometre size regime is not covered by the size distribution measurements. © 2020 Author(s).

Loading...
Thumbnail Image
Item

The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical framework

2021, Jimenez, Cristofer, Ansmann, Albert, Engelmann, Ronny, Donovan, David, Malinka, Aleksey, Schmidt, Jörg, Seifert, Patric, Wandinger, Ulla

In a series of two articles, a novel, robust, and practicable lidar approach is presented that allows us to derive microphysical properties of liquid-water clouds (cloud extinction coefficient, droplet effective radius, liquid-water content, cloud droplet number concentration) at a height of 50–100 m above the cloud base. The temporal resolution of the observations is on the order of 30–120 s. Together with the aerosol information (aerosol extinction coefficients, cloud condensation nucleus concentration) below the cloud layer, obtained with the same lidar, in-depth aerosol–cloud interaction studies can be performed. The theoretical background and the methodology of the new cloud lidar technique is outlined in this article (Part 1), and measurement applications are presented in a companion publication (Part 2) (Jimenez et al., 2020a). The novel cloud retrieval technique is based on lidar observations of the volume linear depolarization ratio at two different receiver fields of view (FOVs). Extensive simulations of lidar returns in the multiple scattering regime were conducted to investigate the capabilities of a dual-FOV polarization lidar to measure cloud properties and to quantify the information content in the measured depolarization features regarding the basic retrieval parameters (cloud extinction coefficient, droplet effective radius). Key simulation results and the overall data analysis scheme developed to obtain the aerosol and cloud products are presented.

Loading...
Thumbnail Image
Item

Multiphase MCM-CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014

2020, Zhu, Yanhong, Tilgner, Andreas, Hoffmann, Erik Hans, Herrmann, Hartmut, Kawamura, Kimitaka, Yang, Lingxiao, Xue, Likun, Wang, Wenxing

Despite the high abundance of secondary aerosols in the atmosphere, their formation mechanisms remain poorly understood. In this study, the Master Chemical Mechanism (MCM) and the Chemical Aqueous-Phase Radical Mechanism (CAPRAM) are used to investigate the multiphase formation and processing of secondary aerosol constituents during the advection of air masses towards the measurement site of Mt. Tai in northern China. Trajectories with and without chemical–cloud interaction are modeled. Modeled radical and non-radical concentrations demonstrate that the summit of Mt. Tai, with an altitude of ∼1.5 km a.m.s.l., is characterized by a suburban oxidants budget. The modeled maximum gas-phase concentrations of the OH radical are 3.2×106 and 3.5×106 molec. cm−3 in simulations with and without cloud passages in the air parcel, respectively. In contrast with previous studies at Mt. Tai, this study has modeled chemical formation processes of secondary aerosol constituents under day vs. night and cloud vs. non-cloud cases along the trajectories towards Mt. Tai in detail. The model studies show that sulfate is mainly produced in simulations where the air parcel is influenced by cloud chemistry. Under the simulated conditions, the aqueous reaction of HSO−3 with H2O2 is the major contributor to sulfate formation, contributing 67 % and 60 % in the simulations with cloud and non-cloud passages, respectively. The modeled nitrate formation is higher at nighttime than during daytime. The major pathway is aqueous-phase N2O5 hydrolysis, with a contribution of 72 % when cloud passages are considered and 70 % when they are not. Secondary organic aerosol (SOA) compounds, e.g., glyoxylic, oxalic, pyruvic and malonic acid, are found to be mostly produced from the aqueous oxidations of hydrated glyoxal, hydrated glyoxylic acid, nitro-2-oxopropanoate and hydrated 3-oxopropanoic acid, respectively. Sensitivity studies reveal that gaseous volatile organic compound (VOC) emissions have a huge impact on the concentrations of modeled secondary aerosol compounds. Increasing the VOC emissions by a factor of 2 leads to linearly increased concentrations of the corresponding SOA compounds. Studies using the relative incremental reactivity (RIR) method have identified isoprene, 1,3-butadiene and toluene as the key precursors for glyoxylic and oxalic acid, but only isoprene is found to be a key precursor for pyruvic acid. Additionally, the model investigations demonstrate that an increased aerosol partitioning of glyoxal can play an important role in the aqueous-phase formation of glyoxylic and oxalic acid. Overall, the present study is the first that provides more detailed insights in the formation pathways of secondary aerosol constituents at Mt. Tai and clearly emphasizes the importance of aqueous-phase chemical processes on the production of multifunctional carboxylic acids.

Loading...
Thumbnail Image
Item

African smoke particles act as cloud condensation nuclei in the wintertime tropical North Atlantic boundary layer over Barbados

2023, Royer, Haley M., Pöhlker, Mira L., Krüger, Ovid, Blades, Edmund, Sealy, Peter, Lata, Nurun Nahar, Cheng, Zezhen, China, Swarup, Ault, Andrew P., Quinn, Patricia K., Zuidema, Paquita, Pöhlker, Christopher, Pöschl, Ulrich, Andreae, Meinrat, Gaston, Cassandra J.

The number concentration and properties of aerosol particles serving as cloud condensation nuclei (CCN) are important for understanding cloud properties, including in the tropical Atlantic marine boundary layer (MBL), where marine cumulus clouds reflect incoming solar radiation and obscure the low-albedo ocean surface. Studies linking aerosol source, composition, and water uptake properties in this region have been conducted primarily during the summertime dust transport season, despite the region receiving a variety of aerosol particle types throughout the year. In this study, we compare size-resolved aerosol chemical composition data to the hygroscopicity parameter κ derived from size-resolved CCN measurements made during the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) campaigns from January to February 2020. We observed unexpected periods of wintertime long-range transport of African smoke and dust to Barbados. During these periods, the accumulation-mode aerosol particle and CCN number concentrations as well as the proportions of dust and smoke particles increased, whereas the average κ slightly decreased (κCombining double low line0.46±0.10) from marine background conditions (κCombining double low line0.52±0.09) when the submicron particles were mostly composed of marine organics and sulfate. Size-resolved chemical analysis shows that smoke particles were the major contributor to the accumulation mode during long-range transport events, indicating that smoke is mainly responsible for the observed increase in CCN number concentrations. Earlier studies conducted at Barbados have mostly focused on the role of dust on CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are also affected by African smoke. Our findings highlight the importance of African smoke for atmospheric processes and cloud formation over the Caribbean.

Loading...
Thumbnail Image
Item

Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin

2023, Liu, Yunfan, Su, Hang, Wang, Siwen, Wei, Chao, Tao, Wei, Pöhlker, Mira L., Pöhlker, Christopher, Holanda, Bruna A., Krüger, Ovid O., Hoffmann, Thorsten, Wendisch, Manfred, Artaxo, Paulo, Pöschl, Ulrich, Andreae, Meinrat O., Cheng, Yafang

Nucleation and condensation associated with biogenic volatile organic compounds (BVOCs) are important aerosol formation pathways, yet their contribution to the upper-tropospheric aerosols remains inconclusive, hindering the understanding of aerosol climate effects. Here, we develop new schemes describing these organic aerosol formation processes in the WRF-Chem model and investigate their impact on the abundance of cloud condensation nuclei (CCN) in the upper troposphere (UT) over the Amazon Basin. We find that the new schemes significantly increase the simulated CCN number concentrations in the UT (e.g., up to -1/4 400 cm-3 at 0.52 % supersaturation) and greatly improve the agreement with the aircraft observations. Organic condensation enhances the simulated CCN concentration by 90 % through promoting particle growth, while organic nucleation, by replenishing new particles, contributes an additional 14 %. Deep convection determines the rate of these organic aerosol formation processes in the UT through controlling the upward transport of biogenic precursors (i.e., BVOCs). This finding emphasizes the importance of the biosphere-atmosphere coupling in regulating upper-tropospheric aerosol concentrations over the tropical forest and calls for attention to its potential role in anthropogenic climate change.

Loading...
Thumbnail Image
Item

Measurement report: Long-range transport and the fate of dimethyl sulfide oxidation products in the free troposphere derived from observations at the high-altitude research station Chacaltaya (5240ma.s.l.) in the Bolivian Andes

2023, Scholz, Wiebke, Shen, Jiali, Aliaga, Diego, Wu, Cheng, Carbone, Samara, Moreno, Isabel, Zha, Qiaozhi, Huang, Wei, Heikkinen, Liine, Jaffrezo, Jean Luc, Uzu, Gaelle, Partoll, Eva, Leiminger, Markus, Velarde, Fernando, Laj, Paolo, Ginot, Patrick, Artaxo, Paolo, Wiedensohler, Alfred, Kulmala, Markku, Mohr, Claudia, Andrade, Marcos, Sinclair, Victoria, Bianchi, Federico, Hansel, Armin

Dimethyl sulfide (DMS) is the primary natural contributor to the atmospheric sulfur burden. Observations concerning the fate of DMS oxidation products after long-range transport in the remote free troposphere are, however, sparse. Here we present quantitative chemical ionization mass spectrometric measurements of DMS and its oxidation products sulfuric acid (H2SO4), methanesulfonic acid (MSA), dimethylsulfoxide (DMSO), dimethylsulfone (DMSO2), methanesulfinic acid (MSIA), methyl thioformate (MTF), methanesulfenic acid (MSEA, CH3SOH), and a compound of the likely structure CH3S(O)2OOH in the gas phase, as well as measurements of the sulfate and methanesulfonate aerosol mass fractions. The measurements were performed at the Global Atmosphere Watch (GAW) station Chacaltaya in the Bolivian Andes located at 5240m above sea level (a.s.l.). DMS and DMS oxidation products are brought to the Andean high-altitude station by Pacific air masses during the dry season after convective lifting over the remote Pacific ocean to 6000-8000ma.s.l. and subsequent long-range transport in the free troposphere (FT). Most of the DMS reaching the station is already converted to the rather unreactive sulfur reservoirs DMSO2 in the gas phase and methanesulfonate (MS-) in the particle phase, which carried nearly equal amounts of sulfur to the station. The particulate sulfate at Chacaltaya is however dominated by regional volcanic emissions during the time of the measurement and not significantly affected by the marine air masses. In one of the FT events, even some DMS was observed next to reactive intermediates such as methyl thioformate, dimethylsulfoxide, and methanesulfinic acid. Also for this event, back trajectory calculations show that the air masses came from above the ocean (distance >330km) with no local surface contacts. This study demonstrates the potential impact of marine DMS emissions on the availability of sulfur-containing vapors in the remote free troposphere far away from the ocean.