Search Results

Now showing 1 - 6 of 6
  • Item
    Development and Implementation of a Guideline for the Combination of Additively Manufactured Joint Assemblies with Wire Actuators made of Shape Memory Alloys
    (Amsterdam [u.a.] : Elsevier, 2023) Löffler, Robin; Tremmel, Stephan; Hornfeck, Rüdiger
    Smart Materials actuators in the form of wires made of shape memory alloys in combination with additively manufactured carrier components are used in a wide variety of prototype developments of innovative joint assemblies. This combination is relevant because of the same manufacturing costs of the additively manufactured components, which are independent of the quantity of parts, the free geometric design possibilities as well as the huge energy density of the aforementioned actuator technology. In particular, the focus is on the possibility of appropriately fitting large wire lengths on a compact part volume while taking into account acceptable force losses. Since there is no design guideline for such joint developments, each is individual, which results in unnecessarily long development times and a higher risk of errors. Based on selected in-house and third-party examples, integration possibilities of shape memory alloy wire actuators in additively manufactured carrier components are analysed and transferred into a universally applicable design guideline. These recommendations are brought into the framework of existing design guidelines of the VDI (Verein Deutscher Ingenieure – Association of German Engineers), namely VDI 2206 and VDI 2221 with extensions for additive manufacturing, for a better usability and integrability into existing processes. Finally, this results in a simplified access to the topic of the combination of additive manufacturing and shape memory alloys and a more efficient realisation of such joint developments.
  • Item
    Self-cleaning stainless steel surfaces induced by laser processing and chemical engineering
    (Amsterdam [u.a.] : Elsevier, 2022) Lorenz, Pierre; Zajadacz, Joachim; Marquardt, Franka; Ehrhardt, Martin; Hommes, Gregor; Peter, Sebastian; Zimmer, Klaus
    Nanostructured surfaces show a variety of beneficial macroscopic effects. The combination of hierarchic nanostructures with a suitable chemical surface composition allows for the fabrication of surfaces with interesting fluidic properties beyond such effects. This approach enables the specification of nano/microstructure and chemical composition independent of each other. Various hierarchical micro- and nanostructures can be realized by laser texturing of stainless steel surfaces with infrared picosecond laser. Simultaneously, the surface is activated for chemical processing. The surface can now be tuned by bonding of a self-assembled monolayer on the laser-treated surface by chemical treatment. This two-step functionalization process allows the for separated adjusting of the surface topography and chemical composition and thus for the well-defined setting of the surface properties. The fabrication of superhydrophobic surfaces with self-cleaning properties are performed that can be functionalized further by subsequent laser-irradiation. Furthermore, the long-time stability of the surface functionalization in relation to the impact chemicals or radiation was investigated.
  • Item
    Characterization of Silicon Crystals Grown from Melt in a Granulate Crucible
    (Warrendale, Pa : TMS, 2020) Dadzis, K.; Menzel, R.; Juda, U.; Irmscher, K.; Kranert, C.; Müller, M.; Ehrl, M.; Weingärtner, R.; Reimann, C.; Abrosimov, N.; Riemann, H.
    The growth of silicon crystals from a melt contained in a granulate crucible significantly differs from the classical growth techniques because of the granulate feedstock and the continuous growth process. We performed a systematic study of impurities and structural defects in several such crystals with diameters up to 60 mm. The possible origin of various defects is discussed and attributed to feedstock (concentration of transition metals), growth setup (carbon concentration), or growth process (dislocation density), showing the potential for further optimization. A distinct correlation between crystal defects and bulk carrier lifetime is observed. A bulk carrier lifetime with values up to 600 μs on passivated surfaces of dislocation-free parts of the crystal is currently achieved.
  • Item
    Optimization of the Epitaxial Growth of Undoped GaN Waveguides in GaN-Based Laser Diodes Evaluated by Photoluminescence
    (Warrendale, Pa : TMS, 2020) Netzel, C.; Hoffmann, V.; Einfeldt, S.; Weyers, M.
    Non-intentionally doped c-plane GaN layers are generally employed as p-side waveguide layers in violet/blue-emitting laser diodes. The recombination and diffusion of charge carriers in the p-side GaN waveguide influence the injection efficiency of holes into the InGaN quantum wells of these devices. In this study, the non-radiative recombination and the diffusivity in the [000-1] direction for charge carriers in such GaN layers are investigated by the photoluminescence of buried InGaN quantum wells, in addition to the GaN photoluminescence. The vertical charge carrier diffusion length and the diffusion constant in GaN were determined by evaluating the intensity from InGaN quantum wells in different depths below a top GaN layer. Additionally, the intensity from the buried InGaN quantum wells was found to be more sensitive to variations in the non-radiative recombination rate in the GaN layer than the intensity from the GaN itself. The study enables conclusions to be drawn on how the growth of a p-side GaN waveguide layer has to be optimized: (1) The charge carrier diffusivity in the [000-1] direction at device operation temperature is limited by phonon scattering and can be only slightly improved by material quality. (2) The use of TMGa (trimethylgallium) instead of TEGa (triethylgallium) as a precursor for the growth of GaN lowers the background silicon doping level and is advantageous for a large hole diffusion length. (3) Small growth rates below 0.5 μm/h when using TMGa or below 0.12 μm/h when using TEGa enhance non-radiative recombination. (4) A V/III gas ratio of 2200 or more is needed for low non-radiative recombination rates in GaN.
  • Item
    Process Monitoring of a Vibration Dampening CFRP Drill Tube in BTA deep hole drilling using Fibre-Bragg-Grating Sensors
    (Amsterdam [u.a.] : Elsevier, 2022) Summa, Jannik; Michel, Sebastian; Kurkowski, Moritz; Biermann, Dirk; Stommel, Markus; Herrmann, Hans-Georg
    The large tool length in BTA deep hole drilling often leads to strong torsional vibrations of the tool system, leading to a reduced bore hole quality failures. When substituting steel drill tubes with tubes from composite material, the laminate structure dampens these vibrations. Secondly, the integration of sensors allow to monitor process vibrations. This contribution introduces a new sensor platform to measure process vibrations, feed force and drilling torque using Fibre-Bragg Grating Sensors. The presented experimental results focus on characteristic frequency spectra with natural torsional and compression frequencies of the CFRP drill tube, which show variations due to changed feed.
  • Item
    Secondary electron yield engineering of copper surfaces by 532 nm ultrashort laser pulses
    (Amsterdam [u.a.] : Elsevier, 2022) Lorenz, Pierre; Bez, Elena; Himmerlich, Marcel; Ehrhardt, Martin; Taborelli, Mauro; Zimmer, Klaus
    Nanostructured surfaces exhibit outstanding properties and enable manifold industrial applications. In this study the laser surface processing of polycrystalline, flat copper surfaces by 532 nm picosecond laser irradiation for secondary electron yield (SEY) reduction is reported. The laser beam was scanned in parallel lines across the sample surface in order to modify large surface areas. Morphology and SEY are characterized in dependence of the process parameters to derive correlations and mechanisms of the laser-based SEY engineering process. The nano- and microstructure morphology of the laser-modified surface was characterized by scanning electron microscopy and the secondary electron yield was measured. In general, an SEY reduction with increasing accumulated laser fluence was found. In particular, at low scanning speed (1 mm/s - 10 mm/s) and “high” laser power (~ 1 W) compact nanostructures with a very low SEY maximum of 0.7 are formed.