Search Results

Now showing 1 - 2 of 2
  • Item
    Dry etching of monocrystalline silicon using a laser-induced reactive micro plasma
    (Amsterdam : Elsevier, 2021) Heinke, Robert; Ehrhardt, Martin; Lorenz, Pierre; Zimmer, Klaus
    Dry etching is a prevalent technique for pattern transfer and material removal in microelectronics, optics and photonics due to its high precision material removal with low surface and subsurface damage. These processes, including reactive ion etching (RIE) and plasma etching (PE), are performed at vacuum conditions and provide high selectivity and vertical side wall etched patterns but create high costs and efforts in maintenance due to the required machinery. In contrast to electrically generated plasmas, laser-induced micro plasmas are controllable sources of reactive species in gases at atmospheric pressure that can be used for dry etching of materials. In the present study, we have demonstrated the laser-induced plasma etching of monocrystalline silicon. A Ti:Sapphire laser has been used for igniting an optically pumped plasma in a CF4/O2 gas mixture near atmospheric pressure. The influence of process parameters, like substrate temperature, O2 concentration, plasma-surface distance, etching duration, pulse energy and crystal orientation on etching rate and surface morphology has been investigated. Typical etching rates of 2–12 µm x min−1 can be achieved by varying mentioned parameters with a decreasing etching rate during the process. Different morphologies can be observed due to the parameters set, smooth as well as rough surfaces or even inverted pyramids. The presented etching method provides an approach for precise machining of silicon surfaces with good surface qualities near atmospheric pressure and sufficiently high material removal rates for ultraprecise surface machining. © 2021 The Author(s)
  • Item
    Micro-embossing of micro-structures in RSA-501 as mold inserts for the replication of micro-lens arrays
    (Amsterdam : Elsevier, 2022) Kober, Julian; Rolón, Daniel; Hölzel, Florian; Kühne, Stefan; Oberschmidt, Dirk; Arnold, Thomas
    The production of mold inserts for the replication of micro-lens arrays through micro-embossing could be an alternative process route compared to diamond turning or milling in order to reduce time and costs. The rapidly solidified aluminum alloy RSA-501 is expected to form micro-structures with low surface roughness because of its ultra-fine grain structure. In micro-embossing challenges like elastic spring back effect, pile-ups, and forming accuracy depend on the material behavior. Therefore, RSA-501 was further characterized and the influence of polishing or flycutting on the material behavior was investigated. To further understand the grain and microstructure samples were sectioned along their cross and longitudinal directions. The grain structure of RSA-501 was oriented along the extrusion direction and the mean grain sizes were <1.00 μm. Furthermore, RSA-501 was micro-embossed to investigate the influence of the material behavior and surface preparation on the forming of micro-structures. The induced surface integrity through flycutting was not deep enough to influence the forming of micro-structures. Therefore, the workpiece surface can be prepared either by polishing or flycutting. When micro-embossing RSA-501, cross and longitudinal sections can be used. However, it is recommended to process the cross section because of its isotropic grain structure. It was shown that the curvature radius of micro-embossed concave structures differs from the tool radius. This is due to the elastic spring back effect. Since the embossed structure remains spherical, the spring back effect can be compensated by adjusting the tool radius.