Search Results

Now showing 1 - 2 of 2
  • Item
    Labour Market Information Driven, Personalized, OER Recommendation System for Lifelong Learners
    (Setúbal, Portugal : Science and Technology Publications, Lda, 2020) Tavakoli, Mohammadreza; Mol, Stefan; Kismihók, Gábor; Lane, H. Chad; Zvacek, Susan; Uhomoibhi, James
    In this paper, we suggest a novel method to aid lifelong learners to access relevant OER based learning content to master skills demanded on the labour market. Our software prototype 1) applies Text Classification and Text Mining methods on vacancy announcements to decompose jobs into meaningful skills components, which lifelong learners should target; and 2) creates a hybrid OER Recommender System to suggest personalized learning content for learners to progress towards their skill targets. For the first evaluation of this prototype we focused on two job areas: Data Scientist, and Mechanical Engineer. We applied our skill extractor approach and provided OER recommendations for learners targeting these jobs. We conducted in-depth, semi-structured interviews with 12 subject matter experts to learn how our prototype performs in terms of its objectives, logic, and contribution to learning. More than 150 recommendations were generated, and 76.9% of these recommendations were treated as us eful by the interviewees. Interviews revealed that a personalized OER recommender system, based on skills demanded by labour market, has the potential to improve the learning experience of lifelong learners.
  • Item
    SciBERT-based Semantification of Bioassays in the Open Research Knowledge Graph
    (Aachen : RWTH, 2020) Anteghini, Marco; D'Souza, Jennifer; Martins dos Santos, Vitor A.P.; Auer, Sören
    As a novel contribution to the problem of semantifying bio- logical assays, in this paper, we propose a neural-network-based approach to automatically semantify, thereby structure, unstructured bioassay text descriptions. Experimental evaluations, to this end, show promise as the neural-based semantification significantly outperforms a naive frequencybased baseline approach. Specifically, the neural method attains 72% F1 versus 47% F1 from the frequency-based method. The work in this paper aligns with the present cutting-edge trend of the scholarly knowledge digitalization impetus which aim to convert the long-standing document-based format of scholarly content into knowledge graphs (KG). To this end, our selected data domain of bioassays are a prime candidate for structuring into KGs.