Search Results

Now showing 1 - 5 of 5
  • Item
    Cost-effective mitigation of nitrogen pollution from global croplands
    (London [u.a.] : Nature Publ. Group, 2023) Gu, Baojing; Zhang, Xiuming; Lam, Shu Kee; Yu, Yingliang; van Grinsven, Hans J. M.; Zhang, Shaohui; Wang, Xiaoxi; Bodirsky, Benjamin Leon; Wang, Sitong; Duan, Jiakun; Ren, Chenchen; Bouwman, Lex; de Vries, Wim; Xu, Jianming; Sutton, Mark A.; Chen, Deli
    Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30–70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10–30% and 10–80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.
  • Item
    Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries
    (London : BMJ Publ. Group, 2020) Vicedo-Cabrera, Ana M.; Sera, Francesco; Liu, Cong; Armstrong, Ben; Milojevic, Ai; Guo, Yuming; Tong, Shilu; Lavigne, Eric; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Samoli, Evangelia; Stafoggia, Massimo; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Hurtado-Diaz, Magali; Cruz, Julio; Silva, Susana; Madureira, Joana; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Röösli, Martin; Guo, Yue-Liang Leon; Chen, Bing-Yu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L.; Kan, Haidong; Gasparrini, Antonio
    Objective To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. Design Two stage time series analysis. Setting 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. Population Deaths for all causes or for external causes only registered in each city within the study period. Main outcome measures Daily total mortality (all or non-external causes only). Results A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 μg/m 3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 μg/m 3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 μg/m 3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. Conclusions Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies. © Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to.
  • Item
    The environmental footprint of health care: a global assessment
    (Amsterdam : Elsevier, 2020) Lenzen, Manfred; Malik, Arunima; Li, Mengyu; Fry, Jacob; Weisz, Helga; Pichler, Peter-Paul; Chaves, Leonardo Suveges Moreira; Capon, Anthony; Pencheon, David
    Background: Health-care services are necessary for sustaining and improving human wellbeing, yet they have an environmental footprint that contributes to environment-related threats to human health. Previous studies have quantified the carbon emissions resulting from health care at a global level. We aimed to provide a global assessment of the wide-ranging environmental impacts of this sector. Methods: In this multiregional input-output analysis, we evaluated the contribution of health-care sectors in driving environmental damage that in turn puts human health at risk. Using a global supply-chain database containing detailed information on health-care sectors, we quantified the direct and indirect supply-chain environmental damage driven by the demand for health care. We focused on seven environmental stressors with known adverse feedback cycles: greenhouse gas emissions, particulate matter, air pollutants (nitrogen oxides and sulphur dioxide), malaria risk, reactive nitrogen in water, and scarce water use. Findings: Health care causes global environmental impacts that, depending on which indicator is considered, range between 1% and 5% of total global impacts, and are more than 5% for some national impacts. Interpretation: Enhancing health-care expenditure to mitigate negative health effects of environmental damage is often promoted by health-care practitioners. However, global supply chains that feed into the enhanced activity of health-care sectors in turn initiate adverse feedback cycles by increasing the environmental impact of health care, thus counteracting the mission of health care. Funding: Australian Research Council, National eResearch Collaboration Tools and Resources project. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  • Item
    Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities
    (London : BMJ Publ. Group, 2021) Meng, Xia; Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Milojevic, Ai; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolas Valdes; Osorio, Samuel; Garcia, null; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J. K.; Ryti, Niilo; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Nunes, Baltazar; Teixeira, João Paulo; Holobaca, Iulian Horia; Fratianni, Simona; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Pan, Shih-Chun; Li, Shanshan; Bell, Michelle L.; Zanobetti, Antonella; Schwartz, Joel; Wu, Tangchun; Gasparrini, Antonio; Kan, Haidong
    Objective To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting 398 cities in 22 low to high income countries/regions. Main outcome measures Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. Conclusions This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.
  • Item
    The Planetary Health Academy—a virtual lecture series for transformative education in Germany
    (Amsterdam : Elsevier, 2023) Gepp, Sophie; Jung, Laura; Wabnitz, Katharina; Schneider, Frederick; v Gierke, Friederike; Otto, Hannah; Hartmann, Sylvia; Gemke, Theresa; Schulz, Christian; Gabrysch, Sabine; Fast, Marischa; Schwienhorst-Stich, Eva-Maria
    The planetary crises require health professionals to understand the interlinkages between health and environmental changes, and how to reduce ecological harm (ie, ecological footprint) and promote positive change (ie, ecological handprint). However, health professions’ education and training are mostly lacking these aspects. In this Viewpoint, we report findings from the evaluation of the Planetary Health Academy, the first open online lecture series for transformative planetary health education in Germany. In a retrospective online survey, 458 of 3656 Planetary Health Academy participants reported on their emotions towards climate change, attitudes towards health professionals’ responsibilities, self-efficacy, and the contribution of the Planetary Health Academy to their knowledge and actions. Additionally, motivators and barriers to acting were assessed. Our findings provide insights that can inform future efforts for transformative education. Combined with network and movement building, education could act as a social tipping element toward actions to mitigate global environmental changes.