Search Results

Now showing 1 - 10 of 29
  • Item
    Encapsulation of bacteria in bilayer Pluronic thin film hydrogels: A safe format for engineered living materials
    (Amsterdam : Elsevier, 2023) Bhusari, Shardul; Kim, Juhyun; Polizzi, Karen; Sankaran, Shrikrishnan; del Campo, Aránzazu
    In engineered living materials (ELMs) non-living matrices encapsulate microorganisms to acquire capabilities like sensing or biosynthesis. The confinement of the organisms to the matrix and the prevention of overgrowth and escape during the lifetime of the material is necessary for the application of ELMs into real devices. In this study, a bilayer thin film hydrogel of Pluronic F127 and Pluronic F127 acrylate polymers supported on a solid substrate is introduced. The inner hydrogel layer contains genetically engineered bacteria and supports their growth, while the outer layer acts as an envelope and does not allow leakage of the living organisms outside of the film for at least 15 days. Due to the flat and transparent nature of the construct, the thin layer is suited for microscopy and spectroscopy-based analyses. The composition and properties of the inner and outer layer are adjusted independently to fulfil viability and confinement requirements. We demonstrate that bacterial growth and light-induced protein production are possible in the inner layer and their extent is influenced by the crosslinking degree of the used hydrogel. Bacteria inside the hydrogel are viable long term, they can act as lactate-sensors and remain active after storage in phosphate buffer at room temperature for at least 3 weeks. The versatility of bilayer bacteria thin-films is attractive for fundamental studies and for the development of application-oriented ELMs.
  • Item
    Recent advances for flame retardant rubber composites: Mini-review
    (Amsterdam : Elsevier, 2023) Lai, Liangqing; Liu, Jia; Lv, Zhen; Gao, Tianming; Luo, Yongyue
    Flame retardant rubber composites have attracted a great attention during the past decades owing to their irreplaceable roles in complex industrial systems. Large amounts of efforts have been made to improve the flame retardant ability, developing high efficiency flame retardant systems which can reduce the release of heat, smoke and toxic gases while not deteriorate overall properties is becoming more and more important. This review briefly outlines the recent developments of flame retardant natural rubbers, silicon rubbers, some kinds of artificial rubbers and polyurethane elastomer composites, focuses on the design, development, mechanism and applications of advanced high-performance flame-retardant methods. Finally, outlooks the future tendency including more environmental-friendly strategies, higher flame-retardant efficiency and development of multifunctional flame-retardant rubber composites are proposed.
  • Item
    In situ detection of cracks during laser powder bed fusion using acoustic emission monitoring
    (Amsterdam : Elsevier, 2022) Seleznev, Mikhail; Gustmann, Tobias; Friebel, Judith Miriam; Peuker, Urs Alexander; Kühn, Uta; Hufenbach, Julia Kristin; Biermann, Horst; Weidner, Anja
    Despite rapid development of laser powder bed fusion (L-PBF) and its monitoring techniques, there is still a lack of in situ crack detection methods, among which acoustic emission (AE) is one of the most sensitive. To elaborate on this topic, in situ AE monitoring was applied to L-PBF manufacturing of a high-strength Al92Mn6Ce2 (at. %) alloy and combined with subsequent X-ray computed tomography. By using a structure borne high-frequency sensor, even a simple threshold-based monitoring was able to detect AE activity associated with cracking, which occurred not only during L-PBF itself, but also after the build job was completed, i.e. in the cooling phase. AE data analysis revealed that crack-related signals can easily be separated from the background noise (e.g. inert gas circulation pump) through their specific shape of a waveform, as well as their energy, skewness and kurtosis. Thus, AE was verified to be a promising method for L-PBF monitoring, enabling to detect formation of cracks regardless of their spatial and temporal occurrence.
  • Item
    Multiproxy approach to the reconstruction of soil denudation events and the disappearance of Luvisols in the loess landscape of south-western Poland
    (Amsterdam : Elsevier, 2022) Loba, Aleksandra; Zhang, Junjie; Tsukamoto, Sumiko; Kasprzak, Marek; Beata Kowalska, Joanna; Frechen, Manfred; Waroszewski, Jarosław
    Loess landscapes are highly susceptible to soil redeposition processes and thus may provide detailed insights into the record of denudation processes. Using optically stimulated luminescence dating and the soil micromorphology of 12 soil profiles, we reconstructed a complete record of denudation processes in south-western Poland. The first episode of soil redeposition took place around 9.1 ka. The denudation events that followed were attributed to the Neolithic (6.4 ± 0.3 ka), early Bronze Age (3.8 ± 0.2 ka), early and late Middle Ages (1.5 ± 0.1 ka and 0.7 ± 0.03 ka, respectively) and early Modern (0.4 ± 0.02 ka). As a consequence of the denudation processes, the soil cover in the studied area had been strongly reshaped. The predominant Luvisols had experienced progressive erosion processes that led first to a significant shallowing of the eluvial and argic horizons (truncated Luvisol) and, after some time, to their complete removal. Further thinning of the loess mantles had exposed geological substrates with very weak pedogenic alternations, thus pushing their transformation towards Regosol types. Similarly, Regosols occurred in toeslopes where freshly eroded material had been deposited, and where diagnostic horizons had not yet developed. Modern soil erosion rates in the studied loess area have considerably increased, and it is estimated that the Luvisol status may be completely transformed within approximately 80–300 years, if not sooner, due to progressive climate change.
  • Item
    Investigation on the potential of applying bio-based edible coatings for horticultural products exemplified with cucumbers
    (Amsterdam : Elsevier, 2022) Rux, G.; Labude, C.; Herppich, W.B.; Geyer, M.
    Plastic packaging for fresh horticultural produce has many advantages but generates plastic waste and ecological alternatives are required. Edible coatings can retard many processes related to loss of quality. Hydrophobic lipid-based coatings are preferably applied for fresh fruits and vegetables. The approval of such coatings for products with edible peels in EU is increasingly under discussion. However, investigations on the efficiency of various edible coatings on soft-skinned fruit and vegetables are rare and it is currently unclear whether the consumer will accept them. Therefore, this study investigates (1) important characteristics of a lipid-based coating and (2) its ability to maintain the post-harvest quality of fresh cucumbers. This was evaluated by a comparative storage test under common suboptimal retail conditions (20 °C; 65% RH). The study also evaluates (3) the general perception of consumers about and their acceptance of the application of edible coatings on fresh fruit and vegetables with edible peels. The investigated coating was able to drastically reduce water loss (54–68%) and fruit respiration (approx. 33%) of fresh cucumber. The reduction of tissue stiffness was delayed by 2 days, thus, prolonged shelf life. Majority of consumer (77%) endorse the application of edible coatings as an alternative to plastic packaging, but emphasized important requirements for them.
  • Item
    Gain and lasing from CdSe/CdS nanoplatelet stripe waveguides
    (Amsterdam : Elsevier, 2022) Belitsch, Martin; Dirin, Dmitry N.; Kovalenko, Maksym V.; Pichler, Kevin; Rotter, Stefan; Ghalgaoui, Ahmed; Ditlbacher, Harald; Hohenau, Andreas; Krenn, Joachim R.
    Colloidal semiconducting nanocrystals are efficient, stable and spectrally tunable emitters, but achievable optical gain is often limited by fast nonradiative processes. These processes are strongly suppressed in slab-shaped nanocrystals (nanoplatelets), due to relaxed exciton Coulomb interaction. Here, we show that CdSe/CdS nanoplatelets can be engineered into (sub)microscopic stripe waveguides that achieve lasing without further components for feedback, i.e., just relying on the stripe end reflection. We find a remarkably high gain factor for the CdSe/CdS nanoplatelets of 1630 cm−1. In addition, by comparison with numerical simulations we assign a distinct emission peak broadening above laser threshold to emission pulse shortening. Our results illustrate the feasibility of geometrically simple monolithic microscale nanoplatelet lasers as an attractive option for a variety of photonic applications.
  • Item
    Dynamics, cation conformation and rotamers in guanidinium ionic liquids with ether groups
    (Amsterdam : Elsevier, 2023) Rauber, Daniel; Philippi, Frederik; Morgenstern, Bernd; Zapp, Josef; Kuttich, Björn; Kraus, Tobias; Welton, Tom; Hempelmann, Rolf; Kay, Christopher W.M.
    Ionic liquids are modern materials with a broad range of applications, including electrochemical devices, the exploitation of sustainable resources and chemical processing. Expanding the chemical space to include novel ion classes allows for the elucidation of novel structure-property relationships and fine tuning for specific applications. We prepared a set of ionic liquids based on the sparsely investigated pentamethyl guanidinium cation with a 2-ethoxy-ethyl side chain in combination with a series of frequently used anions. The resulting properties are compared to a cation with a pentyl side chain lacking ether functionalization. We measured the thermal transitions and transport properties to estimate the performance and trends of this cation class. The samples with imide-type anions form liquids at ambient temperature, and show good transport properties, comparable to imidazolium or ammonium ionic liquids. Despite the dynamics being significantly accelerated, ether functionalization of the cation favors the formation of crystalline solids. Single crystal structure analysis, ab initio calculations and variable temperature nuclear magnetic resonance measurements (VT-NMR) revealed that cation conformations for the ether- and alkyl-chain-substituted are different in both the solid and liquid states. While ether containing cations adopt compact, curled structures, those with pentyl side chains are linear. The Eyring plot revealed that the curled conformation is accompanied by a higher activation energy for rotation around the carbon-nitrogen bonds, due to the coordination of the ether chain as observed by VT-NMR.
  • Item
    Impact of mucus modulation by N-acetylcysteine on nanoparticle toxicity
    (Amsterdam : Elsevier, 2023) Meziu, Enkeleda; Shehu, Kristela; Koch, Marcus; Schneider, Marc; Kraegeloh, Annette
    Human respiratory mucus is a biological hydrogel that forms a protective barrier for the underlying epithelium. Modulation of the mucus layer has been employed as a strategy to enhance transmucosal drug carrier transport. However, a drawback of this strategy is a potential reduction of the mucus barrier properties, in particular in situations with an increased exposure to particles. In this study, we investigated the impact of mucus modulation on its protective role. In vitro mucus was produced by Calu-3 cells, cultivated at the air-liquid interface for 21 days and used for further testing as formed on top of the cells. Analysis of confocal 3D imaging data revealed that after 21 days Calu-3 cells secrete a mucus layer with a thickness of 24 ± 6 μm. Mucus appeared to restrict penetration of 500 nm carboxyl-modified polystyrene particles to the upper 5–10 μm of the layer. Furthermore, a mucus modulation protocol using aerosolized N-acetylcysteine (NAC) was developed. This treatment enhanced the penetration of particles through the mucus down to deeper layers by means of the mucolytic action of NAC. These findings were supported by cytotoxicity data, indicating that intact mucus protects the underlying epithelium from particle-induced effects on membrane integrity. The impact of NAC treatment on the protective properties of mucus was probed by using 50 and 100 nm amine-modified and 50 nm carboxyl-modified polystyrene nanoparticles, respectively. Cytotoxicity was only induced by the amine-modified particles in combination with NAC treatment, implying a reduced protective function of modulated mucus. Overall, our data emphasize the importance of integrating an assessment of the protective function of mucus into the development of therapy approaches involving mucus modulation.
  • Item
    Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimization
    (Amsterdam : Elsevier, 2022) Dvurechensky, Pavel; Kamzolov, Dmitry; Lukashevich, Aleksandr; Lee, Soomin; Ordentlich, Erik; Uribe, César A.; Gasnikov, Alexander
    Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes compute gradients in parallel, which are then used by the central node to update the parameter by solving an auxiliary (preconditioned) smaller-scale optimization problem. The recently proposed Statistically Preconditioned Accelerated Gradient (SPAG) method [1] has complexity bounds superior to other such algorithms but requires an exact solution for computationally intensive auxiliary optimization problems at every iteration. In this paper, we propose an Inexact SPAG (InSPAG) and explicitly characterize the accuracy by which the corresponding auxiliary subproblem needs to be solved to guarantee the same convergence rate as the exact method. We build our results by first developing an inexact adaptive accelerated Bregman proximal gradient method for general optimization problems under relative smoothness and strong convexity assumptions, which may be of independent interest. Moreover, we explore the properties of the auxiliary problem in the InSPAG algorithm assuming Lipschitz third-order derivatives and strong convexity. For such problem class, we develop a linearly convergent Hyperfast second-order method and estimate the total complexity of the InSPAG method with hyperfast auxiliary problem solver. Finally, we illustrate the proposed method's practical efficiency by performing large-scale numerical experiments on logistic regression models. To the best of our knowledge, these are the first empirical results on implementing high-order methods on large-scale problems, as we work with data where the dimension is of the order of 3 million, and the number of samples is 700 million.
  • Item
    Accelerated variance-reduced methods for saddle-point problems
    (Amsterdam : Elsevier, 2022) Borodich, Ekaterina; Tominin, Vladislav; Tominin, Yaroslav; Kovalev, Dmitry; Gasnikov, Alexander; Dvurechensky, Pavel
    We consider composite minimax optimization problems where the goal is to find a saddle-point of a large sum of non-bilinear objective functions augmented by simple composite regularizers for the primal and dual variables. For such problems, under the average-smoothness assumption, we propose accelerated stochastic variance-reduced algorithms with optimal up to logarithmic factors complexity bounds. In particular, we consider strongly-convex-strongly-concave, convex-strongly-concave, and convex-concave objectives. To the best of our knowledge, these are the first nearly-optimal algorithms for this setting.