Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

Organic carbon burial is paced by a ∼173-ka obliquity cycle in the middle to high latitudes

2021, Huang, He, Gao, Yuan, Ma, Chao, Jones, Matthew M., Zeeden, Christian, Ibarra, Daniel E., Wu, Huaichun, Wang, Chengshan

Earth’s climate system is complex and inherently nonlinear, which can induce some extraneous cycles in paleoclimatic proxies at orbital time scales. The paleoenvironmental consequences of these extraneous cycles are debated owing to their complex origin. Here, we compile high-resolution datasets of total organic carbon (TOC) and stable carbon isotope (δ13Corg) datasets to investigate organic carbon burial processes in middle to high latitudes. Our results document a robust cyclicity of ~173 thousand years (ka) in both TOC and δ13Corg. The ~173-ka obliquity–related forcing signal was amplified by internal climate feedbacks of the carbon cycle under different geographic and climate conditions, which control a series of sensitive climatic processes. In addition, our new and compiled records from multiple proxies confirm the presence of the obliquity amplitude modulation (AM) cycle during the Mesozoic and Cenozoic and indicate the usefulness of the ~173-ka cycle as geochronometer and for paleoclimatic interpretation.

Loading...
Thumbnail Image
Item

Highly efficient modulation doping: A path toward superior organic thermoelectric devices

2022, Wang, Shu-Jen, Panhans, Michel, Lashkov, Ilia, Kleemann, Hans, Caglieris, Federico, Becker-Koch, David, Vahland, Jörn, Guo, Erjuan, Huang, Shiyu, Krupskaya, Yulia, Vaynzof, Yana, Büchner, Bernd, Ortmann, Frank, Leo, Karl

We investigate the charge and thermoelectric transport in modulation-doped large-area rubrene thin-film crystals with different crystal phases. We show that modulation doping allows achieving superior doping efficiencies even for high doping densities, when conventional bulk doping runs into the reserve regime. Modulation-doped orthorhombic rubrene achieves much improved thermoelectric power factors, exceeding 20 μW m−1 K−2 at 80°C. Theoretical studies give insight into the energy landscape of the heterostructures and its influence on qualitative trends of the Seebeck coefficient. Our results show that modulation doping together with high-mobility crystalline organic semiconductor films is a previosly unexplored strategy for achieving high-performance organic thermoelectrics.

Loading...
Thumbnail Image
Item

Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode

2022, Xu, Fei, Qu, Changzhen, Lu, Qiongqiong, Meng, Jiashen, Zhang, Xiuhai, Xu, Xiaosa, Qiu, Yuqian, Ding, Baichuan, Yang, Jiaying, Cao, Fengren, Yang, Penghui, Jiang, Guangshen, Kaskel, Stefan, Ma, Jingyuan, Li, Liang, Zhang, Xingcai, Wang, Hongqiang

Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm−2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm−2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.

Loading...
Thumbnail Image
Item

A thrombin-triggered self-regulating anticoagulant strategy combined with anti-inflammatory capacity for blood-contacting implants

2022, Wang, Yanan, Wu, Haoshuang, Zhou, Zhongyi, Maitz, Manfred F., Liu, Kunpeng, Zhang, Bo, Yang, Li, Luo, Rifang, Wang, Yunbing

Interrelated coagulation and inflammation are impediments to endothelialization, a prerequisite for the longterm function of cardiovascular materials. Here, we proposed a self-regulating anticoagulant coating strategy combined with anti-inflammatory capacity, which consisted of thrombin-responsive nanogels with anticoagulant and anti-inflammatory components. As an anticoagulant, rivaroxaban was encapsulated in nanogels cross-linked by thrombin-cleavable peptide and released upon the trigger of environmental thrombin, blocking the further coagulation cascade. The superoxide dismutase mimetic Tempol imparted the antioxidant property. Polyphenol epigallocatechin gallate (EGCG), in addition to its anti-inflammatory function in synergy with Tempol, also acted as a weak cross-linker to stabilize the coating. The effectiveness and versatility of this coating were validated using two typical cardiovascular devices as models, biological valves and vascular stents. It was demonstrated that the coating worked as a precise strategy to resist coagulation and inflammation, escorted reendothelialization on the cardiovascular devices, and provided a new perspective for designing endothelium-like functional coatings.

Loading...
Thumbnail Image
Item

Water as a "glue" : Elasticity-enhanced wet attachment of biomimetic microcup structures

2022, Wang, Yue, Li, Zhengwei, Elhebeary, Mohamed, Hensel, René, Arzt, Eduard, Saif, M. Taher A.

Octopus, clingfish, and larva use soft cups to attach to surfaces under water. Recently, various bioinspired cups have been engineered. However, the mechanisms of their attachment and detachment remain elusive. Using a novel microcup, fabricated by two-photon lithography, coupled with in situ pressure sensor and observation cameras, we reveal the detailed nature of its attachment/detachment under water. It involves elasticity-enhanced hydrodynamics generating “self-sealing” and high suction at the cup-substrate interface, converting water into “glue.” Detachment is mediated by seal breaking. Three distinct mechanisms of breaking are identified, including elastic buckling of the cup rim. A mathematical model describes the interplay between the attachment/detachment process, geometry, elasto-hydrodynamics, and cup retraction speed. If the speed is too slow, then the octopus cannot attach; if the tide is too gentle for the larva, then water cannot serve as a glue. The concept of “water glue” can innovate underwater transport and manufacturing strategies.

Loading...
Thumbnail Image
Item

Voltage control of magnetic order in RKKY coupled multilayers

2023, Kossak, Alexander E., Huang, Mantao, Reddy, Pooja, Wolf, Daniel, Beach, Geoffrey S. D.

In the field of antiferromagnetic (AFM) spintronics, there is a substantial effort present to make AFMs viable active components for efficient and fast devices. Typically, this is done by manipulating the AFM Néel vector. Here, we establish a method of enabling AFM active components by directly controlling the magnetic order. We show that magneto-ionic gating of hydrogen enables dynamic control of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in solid-state synthetic AFM multilayer devices. Using a gate voltage, we tune the RKKY interaction to drive continuous transitions from AFM to FM and vice versa. The switching is submillisecond at room temperature and fully reversible. We validate the utility of this method by demonstrating that magneto-ionic gating of the RKKY interaction allows for 180° field-free deterministic switching. This dynamic method of controlling a fundamental exchange interaction can engender the manipulation of a broader array of spin textures, e.g., chiral domain walls and skyrmions.

Loading...
Thumbnail Image
Item

Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide

2021, Johnson, Allan S., Conesa, Jordi Valls, Vidas, Luciana, Perez-Salinas, Daniel, Günther, Christian M., Pfau, Bastian, Hallman, Kent A., Haglund, Richard F., Eisebitt, Stefan, Wall, Simon

Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.

Loading...
Thumbnail Image
Item

Better insurance could effectively mitigate the increase in economic growth losses from U.S. hurricanes under global warming

2023, Otto, Christian, Kuhla, Kilian, Geiger, Tobias, Schewe, Jacob, Frieler, Katja

Global warming is likely to increase the proportion of intense hurricanes in the North Atlantic. Here, we analyze how this may affect economic growth. To this end, we introduce an event-based macroeconomic growth model that temporally resolves how growth depends on the heterogeneity of hurricane shocks. For the United States, we find that economic growth losses scale superlinearly with shock heterogeneity. We explain this by a disproportional increase of indirect losses with the magnitude of direct damage, which can lead to an incomplete recovery of the economy between consecutive intense landfall events. On the basis of two different methods to estimate the future frequency increase of intense hurricanes, we project annual growth losses to increase between 10 and 146% in a 2°C world compared to the period 1980–2014. Our modeling suggests that higher insurance coverage can compensate for this climate change–induced increase in growth losses.

Loading...
Thumbnail Image
Item

Fingerprint of volcanic forcing on the ENSO-Indian monsoon coupling

2020, Singh, M., Krishnan, R., Goswami, B., Choudhury, A. D., Swapna, P., Vellore, R., Prajeesh, A. G., Sandeep, N., Venkataraman, C., Donner, R. V., Marwan, N., Kurths, J.

Coupling of the El Niño-Southern Oscillation (ENSO) and Indian monsoon (IM) is central to seasonal summer monsoon rainfall predictions over the Indian subcontinent, although a nonstationary relationship between the two nonlinear phenomena can limit seasonal predictability. Radiative effects of volcanic aerosols injected into the stratosphere during large volcanic eruptions (LVEs) tend to alter ENSO evolution; however, their impact on ENSO-IM coupling remains unclear. Here, we investigate how LVEs influence the nonlinear behavior of the ENSO and IM dynamical systems using historical data, 25 paleoclimate reconstructions, last-millennium climate simulations, large-ensemble targeted climate sensitivity experiments, and advanced analysis techniques. Our findings show that LVEs promote a significantly enhanced phase-synchronization of the ENSO and IM oscillations, due to an increase in the angular frequency of ENSO. The results also shed innovative insights into the physical mechanism underlying the LVE-induced enhancement of ENSO-IM coupling and strengthen the prospects for improved seasonal monsoon predictions.

Loading...
Thumbnail Image
Item

Single “Swiss-roll” microelectrode elucidates the critical role of iron substitution in conversion-type oxides

2022, Liu, Lixiang, Huang, Shaozhuan, Shi, Wujun, Sun, Xiaolei, Pang, Jinbo, Lu, Qiongqiong, Yang, Ye, Xi, Lixia, Deng, Liang, Oswald, Steffen, Yin, Yin, Liu, Lifeng, Ma, Libo, Schmidt, Oliver G., Shi, Yumeng, Zhang, Lin

Advancing the lithium-ion battery technology requires the understanding of electrochemical processes in electrode materials with high resolution, accuracy, and sensitivity. However, most techniques today are limited by their inability to separate the complex signals from slurry-coated composite electrodes. Here, we use a three-dimensional “Swiss-roll” microtubular electrode that is incorporated into a micrometer-sized lithium battery. This on-chip platform combines various in situ characterization techniques and precisely probes the intrinsic electrochemical properties of each active material due to the removal of unnecessary binders and additives. As an example, it helps elucidate the critical role of Fe substitution in a conversion-type NiO electrode by monitoring the evolution of Fe2O3 and solid electrolyte interphase layer. The markedly enhanced electrode performances are therefore explained. Our approach exposes a hitherto unexplored route to tracking the phase, morphology, and electrochemical evolution of electrodes in real time, allowing us to reveal information that is not accessible with bulk-level characterization techniques.