Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Transient magnetic gratings on the nanometer scale

2020, Weder, D., von Korff Schmising, C., Günther, C.M., Schneider, M., Engel, D., Hessing, P., Strüber, C., Weigand, M., Vodungbo, B., Jal, E., Liu, X., Merhe, A., Pedersoli, E., Capotondi, F., Lüning, J., Pfau, B., Eisebitt, S.

Laser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers.

Loading...
Thumbnail Image
Item

Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity

2021, Chardonnet, Valentin, Hennes, Marcel, Jarrier, Romain, Delaunay, Renaud, Jaouen, Nicolas, Kuhlmann, Marion, Ekanayake, Nagitha, Léveillé, Cyril, von Korff Schmising, Clemens, Schick, Daniel, Yao, Kelvin, Liu, Xuan, Chiuzbăian, Gheorghe S., Lüning, Jan, Vodungbo, Boris, Jal, Emmanuelle

During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump–probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm (≃310 eV), we were able to probe close to the Fe L3 edge (706.8 eV) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.