Search Results

Now showing 1 - 2 of 2
  • Item
    Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Contreras Jaimes, Altair T.; Kirste, Gloria; de Pablos‑Martín, Araceli; Selle, Susanne; Martins de Souza e Silva, Juliana; Massera, Jonathan; Karpukhina, Natalia; Hill, Robert G.; Brauer, Delia S.
    Bioactive glasses convert to a biomimetic apatite when in contact with physiological solutions; however, the number and type of phases precipitating depends on glass composition and reactivity. This process is typically followed by X-ray diffraction and infrared spectroscopy. Here, we visualise surface mineralisation in a series of sodium-free bioactive glasses, using transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDXS) and X-ray nano-computed tomography (nano-CT). In the glasses, the phosphate content was increased while adding stoichiometric amounts of calcium to maintain phosphate in an orthophosphate environment in the glass. Calcium fluoride was added to keep the melting temperature low. TEM brought to light the presence of phosphate clustering and nearly crystalline calcium fluoride environments in the glasses. A combination of analytical methods, including solid-state NMR, shows how with increasing phosphate content in the glass, precipitation of calcium fluoride during immersion is superseded by fluorapatite precipitation. Nano-CT gives insight into bioactive glass particle morphology after immersion, while TEM illustrates how compositional changes in the glass affect microstructure at a sub-micron to nanometre-level.
  • Item
    Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Orús, Pablo; Fomin, Vladimir M.; De Teresa, José María; Córdoba, Rosa
    The critical current of a superconducting nanostructure can be suppressed by applying an electric field in its vicinity. This phenomenon is investigated throughout the fabrication and electrical characterization of superconducting tungsten-carbon (W-C) nanostructures grown by Ga+ focused ion beam induced deposition (FIBID). In a 45 nm-wide, 2.7 μm-long W-C nanowire, an increasing side-gate voltage is found to progressively reduce the critical current of the device, down to a full suppression of the superconducting state below its critical temperature. This modulation is accounted for by the squeezing of the superconducting current by the electric field within a theoretical model based on the Ginzburg–Landau theory, in agreement with experimental data. Compared to electron beam lithography or sputtering, the single-step FIBID approach provides with enhanced patterning flexibility and yields nanodevices with figures of merit comparable to those retrieved in other superconducting materials, including Ti, Nb, and Al. Exhibiting a higher critical temperature than most of other superconductors, in which this phenomenon has been observed, as well as a reduced critical value of the gate voltage required to fully suppress superconductivity, W-C deposits are strong candidates for the fabrication of nanodevices based on the electric field-induced superconductivity modulation.