Search Results

Now showing 1 - 2 of 2
  • Item
    Taking stock of national climate policies to evaluate implementation of the Paris Agreement
    ([London] : Nature Publishing Group UK, 2020) Roelfsema, Mark; van Soest, Heleen L.; Harmsen, Mathijs; van Vuuren, Detlef P.; Bertram, Christoph; den Elzen, Michel; Höhne, Niklas; Iacobuta, Gabriela; Krey, Volker; Kriegler, Elmar; Luderer, Gunnar; Riahi, Keywan; Ueckerdt, Falko; Després, Jacques; Drouet, Laurent; Emmerling, Johannes; Frank, Stefan; Fricko, Oliver; Gidden, Matthew; Humpenöder, Florian; Huppmann, Daniel; Fujimori, Shinichiro; Fragkiadakis, Kostas; Gi, Keii; Keramidas, Kimon; Köberle, Alexandre C.; Aleluia Reis, Lara; Rochedo, Pedro; Schaeffer, Roberto; Oshiro, Ken; Vrontisi, Zoi; Chen, Wenying; Iyer, Gokul C.; Edmonds, Jae; Kannavou, Maria; Jiang, Kejun; Mathur, Ritu; Safonov, George; Vishwanathan, Saritha Sudharmma
    Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.
  • Item
    Association between population distribution and urban GDP scaling
    (San Francisco, California, US : PLOS, 2021) Ribeiro, Haroldo V.; Oehlers, Milena; Moreno-Monroy, Ana I; Kropp, Jürgen P.; Rybski, Diego
    Urban scaling and Zipf’s law are two fundamental paradigms for the science of cities. These laws have mostly been investigated independently and are often perceived as disassociated matters. Here we present a large scale investigation about the connection between these two laws using population and GDP data from almost five thousand consistently-defined cities in 96 countries. We empirically demonstrate that both laws are tied to each other and derive an expression relating the urban scaling and Zipf exponents. This expression captures the average tendency of the empirical relation between both exponents, and simulations yield very similar results to the real data after accounting for random variations. We find that while the vast majority of countries exhibit increasing returns to scale of urban GDP, this effect is less pronounced in countries with fewer small cities and more metropolises (small Zipf exponent) than in countries with a more uneven number of small and large cities (large Zipf exponent). Our research puts forward the idea that urban scaling does not solely emerge from intra-city processes, as population distribution and scaling of urban GDP are correlated to each other.