Search Results

Now showing 1 - 2 of 2
  • Item
    Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China
    ([London] : Nature Publishing Group UK, 2021) Xing, Xiaofan; Wang, Rong; Bauer, Nico; Ciais, Philippe; Cao, Junji; Chen, Jianmin; Tang, Xu; Wang, Lin; Yang, Xin; Boucher, Olivier; Goll, Daniel; Peñuelas, Josep; Janssens, Ivan A.; Balkanski, Yves; Clark, James; Ma, Jianmin; Pan, Bo; Zhang, Shicheng; Ye, Xingnan; Wang, Yutao; Li, Qing; Luo, Gang; Shen, Guofeng; Li, Wei; Yang, Yechen; Xu, Siqing
    As China ramped-up coal power capacities rapidly while CO2 emissions need to decline, these capacities would turn into stranded assets. To deal with this risk, a promising option is to retrofit these capacities to co-fire with biomass and eventually upgrade to CCS operation (BECCS), but the feasibility is debated with respect to negative impacts on broader sustainability issues. Here we present a data-rich spatially explicit approach to estimate the marginal cost curve for decarbonizing the power sector in China with BECCS. We identify a potential of 222 GW of power capacities in 2836 counties generated by co-firing 0.9 Gt of biomass from the same county, with half being agricultural residues. Our spatially explicit method helps to reduce uncertainty in the economic costs and emissions of BECCS, identify the best opportunities for bioenergy and show the limitations by logistical challenges to achieve carbon neutrality in the power sector with large-scale BECCS in China.
  • Item
    Taking stock of national climate policies to evaluate implementation of the Paris Agreement
    ([London] : Nature Publishing Group UK, 2020) Roelfsema, Mark; van Soest, Heleen L.; Harmsen, Mathijs; van Vuuren, Detlef P.; Bertram, Christoph; den Elzen, Michel; Höhne, Niklas; Iacobuta, Gabriela; Krey, Volker; Kriegler, Elmar; Luderer, Gunnar; Riahi, Keywan; Ueckerdt, Falko; Després, Jacques; Drouet, Laurent; Emmerling, Johannes; Frank, Stefan; Fricko, Oliver; Gidden, Matthew; Humpenöder, Florian; Huppmann, Daniel; Fujimori, Shinichiro; Fragkiadakis, Kostas; Gi, Keii; Keramidas, Kimon; Köberle, Alexandre C.; Aleluia Reis, Lara; Rochedo, Pedro; Schaeffer, Roberto; Oshiro, Ken; Vrontisi, Zoi; Chen, Wenying; Iyer, Gokul C.; Edmonds, Jae; Kannavou, Maria; Jiang, Kejun; Mathur, Ritu; Safonov, George; Vishwanathan, Saritha Sudharmma
    Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.