Search Results

Now showing 1 - 2 of 2
  • Item
    Wafer-scale nanofabrication of telecom single-photon emitters in silicon
    ([London] : Nature Publishing Group UK, 2022) Hollenbach, Michael; Klingner, Nico; Jagtap, Nagesh S.; Bischoff, Lothar; Fowley, Ciarán; Kentsch, Ulrich; Hlawacek, Gregor; Erbe, Artur; Abrosimov, Nikolay V.; Helm, Manfred; Berencén, Yonder; Astakhov, Georgy V.
    A highly promising route to scale millions of qubits is to use quantum photonic integrated circuits (PICs), where deterministic photon sources, reconfigurable optical elements, and single-photon detectors are monolithically integrated on the same silicon chip. The isolation of single-photon emitters, such as the G centers and W centers, in the optical telecommunication O-band, has recently been realized in silicon. In all previous cases, however, single-photon emitters were created uncontrollably in random locations, preventing their scalability. Here, we report the controllable fabrication of single G and W centers in silicon wafers using focused ion beams (FIB) with high probability. We also implement a scalable, broad-beam implantation protocol compatible with the complementary-metal-oxide-semiconductor (CMOS) technology to fabricate single telecom emitters at desired positions on the nanoscale. Our findings unlock a clear and easily exploitable pathway for industrial-scale photonic quantum processors with technology nodes below 100 nm.
  • Item
    Gate controlled valley polarizer in bilayer graphene
    ([London] : Nature Publishing Group UK, 2020) Chen, Hao; Zhou, Pinjia; Liu, Jiawei; Qiao, Jiabin; Oezyilmaz, Barbaros; Martin, Jens
    Sign reversal of Berry curvature across two oppositely gated regions in bilayer graphene can give rise to counter-propagating 1D channels with opposite valley indices. Considering spin and sub-lattice degeneracy, there are four quantized conduction channels in each direction. Previous experimental work on gate-controlled valley polarizer achieved good contrast only in the presence of an external magnetic field. Yet, with increasing magnetic field the ungated regions of bilayer graphene will transit into the quantum Hall regime, limiting the applications of valley-polarized electrons. Here we present improved performance of a gate-controlled valley polarizer through optimized device geometry and stacking method. Electrical measurements show up to two orders of magnitude difference in conductance between the valley-polarized state and gapped states. The valley-polarized state displays conductance of nearly 4e2/h and produces contrast in a subsequent valley analyzer configuration. These results pave the way to further experiments on valley-polarized electrons in zero magnetic field.