Search Results

Now showing 1 - 10 of 22
  • Item
    A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms
    (2021) Schütz, Christian; Ho, Duy-Khiet; Hamed, Mostafa Mohamed; Abdelsamie, Ahmed Saad; Röhrig, Teresa; Herr, Christian; Kany, Andreas Martin; Rox, Katharina; Schmelz, Stefan; Siebenbürger, Lorenz; Wirth, Marius; Börger, Carsten; Yahiaoui, Samir; Bals, Robert; Scrima, Andrea; Blankenfeldt, Wulf; Horstmann, Justus Constantin; Christmann, Rebekka; Murgia, Xabier; Koch, Marcus; Berwanger, Aylin; Loretz, Brigitta; Hirsch, Anna Katharina Herta; Hartmann, Rolf Wolfgang; Lehr, Claus-Michael; Empting, Martin
    Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) – a crucial transcriptional regulator serving major functions in PA virulence – can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10−9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.
  • Item
    Regulating Bacterial Behavior within Hydrogels of Tunable Viscoelasticity
    (Weinheim : Wiley-VCH, 2022) Bhusari, Shardul; Sankaran, Shrikrishnan; del Campo, Aránzazu
    Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material's composition and function. Understanding how the spatial confinement in 3D can regulate the behavior of the embedded cells is crucial to design and predict ELM's function, minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks. Individual bacteria distributed in the hydrogel matrix at low density form functional colonies whose size is controlled by the extent of permanent crosslinks. With increasing stiffness and elastic response to deformation of the matrix, a decrease in colony volumes and an increase in their sphericity are observed. Protein production follows a different pattern with higher production yields occurring in networks with intermediate permanent crosslinking degrees. These results demonstrate that matrix design can be used to control and regulate the composition and function of ELMs containing microorganisms. Interestingly, design parameters for matrices to regulate bacteria behavior show similarities to those elucidated for 3D culture of mammalian cells.
  • Item
    Scanning electron microscopy preparation of the cellular actin cortex: A quantitative comparison between critical point drying and hexamethyldisilazane drying
    (San Francisco, California, US : PLOS, 2021) Schu, Moritz; Terriac, Emmanuel; Koch, Marcus; Paschke, Stephan; Lautenschläger, Franziska; Flormann, Daniel A.D.
    The cellular cortex is an approximately 200-nm-thick actin network that lies just beneath the cell membrane. It is responsible for the mechanical properties of cells, and as such, it is involved in many cellular processes, including cell migration and cellular interactions with the environment. To develop a clear view of this dense structure, high-resolution imaging is essential. As one such technique, electron microscopy, involves complex sample preparation procedures. The final drying of these samples has significant influence on potential artifacts, like cell shrinkage and the formation of artifactual holes in the actin cortex. In this study, we compared the three most used final sample drying procedures: critical-point drying (CPD), CPD with lens tissue (CPD-LT), and hexamethyldisilazane drying. We show that both hexamethyldisilazane and CPD-LT lead to fewer artifactual mesh holes within the actin cortex than CPD. Moreover, CPD-LT leads to significant reduction in cell height compared to hexamethyldisilazane and CPD. We conclude that the final drying procedure should be chosen according to the reduction in cell height, and so CPD-LT, or according to the spatial separation of the single layers of the actin cortex, and so hexamethyldisilazane.
  • Item
    In vitro assembly of plasmid DNA for direct cloning in Lactiplantibacillus plantarum WCSF1
    (San Francisco, California, US : PLOS, 2023) Blanch-Asensio, Marc; Dey, Sourik; Sankaran, Shrikrishnan
    Lactobacilli are gram-positive bacteria that are growing in importance for the healthcare industry and genetically engineering them as living therapeutics is highly sought after. However, progress in this field is hindered since most strains are difficult to genetically manipulate, partly due to their complex and thick cell walls limiting our capability to transform them with exogenous DNA. To overcome this, large amounts of DNA (>1 μg) are normally required to successfully transform these bacteria. An intermediate host, like E. coli, is often used to amplify recombinant DNA to such amounts although this approach poses unwanted drawbacks such as an increase in plasmid size, different methylation patterns and the limitation of introducing only genes compatible with the intermediate host. In this work, we have developed a direct cloning method based on in-vitro assembly and PCR amplification to yield recombinant DNA in significant quantities for successful transformation in L. plantarum WCFS1. The advantage of this method is demonstrated in terms of shorter experimental duration and the possibility to introduce a gene incompatible with E. coli into L. plantarum WCFS1.
  • Item
    Evolutionary design of explainable algorithms for biomedical image segmentation
    ([London] : Nature Publishing Group UK, 2023) Cortacero, Kévin; McKenzie, Brienne; Müller, Sabina; Khazen, Roxana; Lafouresse, Fanny; Corsaut, Gaëlle; Van Acker, Nathalie; Frenois, François-Xavier; Lamant, Laurence; Meyer, Nicolas; Vergier, Béatrice; Wilson, Dennis G.; Luga, Hervé; Staufer, Oskar; Dustin, Michael L.; Valitutti, Salvatore; Cussat-Blanc, Sylvain
    An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting “black box” models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.
  • Item
    Deformation characteristics of solid-state benzene as a step towards understanding planetary geology
    ([London] : Nature Publishing Group UK, 2022) Zhang, Wenxin; Zhang, Xuan; Edwards, Bryce W.; Zhong, Lei; Gao, Huajian; Malaska, Michael J.; Hodyss, Robert; Greer, Julia R.
    Small organic molecules, like ethane and benzene, are ubiquitous in the atmosphere and surface of Saturn’s largest moon Titan, forming plains, dunes, canyons, and other surface features. Understanding Titan’s dynamic geology and designing future landing missions requires sufficient knowledge of the mechanical characteristics of these solid-state organic minerals, which is currently lacking. To understand the deformation and mechanical properties of a representative solid organic material at space-relevant temperatures, we freeze liquid micro-droplets of benzene to form ~10 μm-tall single-crystalline pyramids and uniaxially compress them in situ. These micromechanical experiments reveal contact pressures decaying from ~2 to ~0.5 GPa after ~1 μm-reduction in pyramid height. The deformation occurs via a series of stochastic (~5-30 nm) displacement bursts, corresponding to densification and stiffening of the compressed material during cyclic loading to progressively higher loads. Molecular dynamics simulations reveal predominantly plastic deformation and densified region formation by the re-orientation and interplanar shear of benzene rings, providing a two-step stiffening mechanism. This work demonstrates the feasibility of in-situ cryogenic nanomechanical characterization of solid organics as a pathway to gain insights into the geophysics of planetary bodies.
  • Item
    Reversibly growing crosslinked polymers with programmable sizes and properties
    ([London] : Nature Publishing Group UK, 2023) Zhou, Xiaozhuang; Zheng, Yijun; Zhang, Haohui; Yang, Li; Cui, Yubo; Krishnan, Baiju P.; Dong, Shihua; Aizenberg, Michael; Xiong, Xinhong; Hu, Yuhang; Aizenberg, Joanna; Cui, Jiaxi
    Growth constitutes a powerful method to post-modulate materials’ structures and functions without compromising their mechanical performance for sustainable use, but the process is irreversible. To address this issue, we here report a growing-degrowing strategy that enables thermosetting materials to either absorb or release components for continuously changing their sizes, shapes, compositions, and a set of properties simultaneously. The strategy is based on the monomer-polymer equilibrium of networks in which supplying or removing small polymerizable components would drive the networks toward expansion or contraction. Using acid-catalyzed equilibration of siloxane as an example, we demonstrate that the size and mechanical properties of the resulting silicone materials can be significantly or finely tuned in both directions of growth and decomposition. The equilibration can be turned off to yield stable products or reactivated again. During the degrowing-growing circle, material structures are selectively varied either uniformly or heterogeneously, by the availability of fillers. Our strategy endows the materials with many appealing capabilities including environment adaptivity, self-healing, and switchability of surface morphologies, shapes, and optical properties. Since monomer-polymer equilibration exists in many polymers, we envision the expansion of the presented strategy to various systems for many applications.
  • Item
    Computational design and optimization of electro-physiological sensors
    ([London] : Nature Publishing Group UK, 2021) Nittala, Aditya Shekhar; Karrenbauer, Andreas; Khan, Arshad; Kraus, Tobias; Steimle, Jürgen
    Electro-physiological sensing devices are becoming increasingly common in diverse applications. However, designing such sensors in compact form factors and for high-quality signal acquisition is a challenging task even for experts, is typically done using heuristics, and requires extensive training. Our work proposes a computational approach for designing multi-modal electro-physiological sensors. By employing an optimization-based approach alongside an integrated predictive model for multiple modalities, compact sensors can be created which offer an optimal trade-off between high signal quality and small device size. The task is assisted by a graphical tool that allows to easily specify design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. They demonstrate that generated designs can achieve an optimal balance between the size of the sensor and its signal acquisition capability, outperforming expert generated solutions.
  • Item
    Optoregulated force application to cellular receptors using molecular motors
    (London : Nature Publishing Group, 2021) Zheng, Yijun; Han, Mitchell K.L.; Zhao, Renping; Blass, Johanna; Zhang, Jingnan; Zhou, Dennis W.; Colard-Itté, Jean-Rémy; Dattler, Damien; Çolak, Arzu; Hoth, Markus; García, Andrés J.; Qu, Bin; Bennewitz, Roland; Giuseppone, Nicolas; del Campo, Aránzazu
    Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively “pull” on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.
  • Item
    Author Correction: Persistent and reversible solid iodine electrodeposition in nanoporous carbons
    ([London] : Nature Publishing Group UK, 2020) Prehal, Christian; Fitzek, Harald; Kothleitner, Gerald; Presser, Volker; Gollas, Bernhard; Freunberger, Stefan A.; Abbas, Qamar
    Correction to: Nature Communications https://doi.org/10.1038/s41467-020-18610-6, published online 24 September 2020.