Search Results

Now showing 1 - 10 of 139
  • Item
    Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
    (Katlenburg-Lindau : Copernicus, 2020) Cornford, Stephen L.; Seroussi, Helene; Asay-Davis, Xylar S.; Gudmundsson, G. Hilmar; Arthern, Rob; Borstad, Chris; Christmann, Julia; dos Santos, Thiago Dias; Feldmann, Johannes; Goldberg, Daniel; Hoffman, Matthew J.; Humbert, Angelika; Kleiner, Thomas; Leguy, Gunter; Lipscomb, William H.; Merino, Nacho; Durand, Gaël; Morlighem, Mathieu; Pollard, David; Rückamp, Martin; Williams, C. Rosie; Yu, Hongju
    We present the result of the third Marine Ice Sheet Model Intercomparison Project, MISMIP+. MISMIP+ is intended to be a benchmark for ice-flow models which include fast sliding marine ice streams and floating ice shelves and in particular a treatment of viscous stress that is sufficient to model buttressing, where upstream ice flow is restrained by a downstream ice shelf. A set of idealized experiments first tests that models are able to maintain a steady state with the grounding line located on a retrograde slope due to buttressing and then explore scenarios where a reduction in that buttressing causes ice stream acceleration, thinning, and grounding line retreat. The majority of participating models passed the first test and then produced similar responses to the loss of buttressing. We find that the most important distinction between models in this particular type of simulation is in the treatment of sliding at the bed, with other distinctions - notably the difference between the simpler and more complete treatments of englacial stress but also the differences between numerical methods - taking a secondary role. © 2020 Wolters Kluwer Medknow Publications. All rights reserved.
  • Item
    ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
    (Katlenburg-Lindau : Copernicus, 2020) Seroussi, Hélène; Nowicki, Sophie; Payne, Antony J.; Goelzer, Heiko; Lipscomb, William H.; Abe-Ouchi, Ayako; Agosta, Cécile; Albrecht, Torsten; Asay-Davis, Xylar; Barthel, Alice; Calov, Reinhard; Cullather, Richard; Dumas, Christophe; Galton-Fenzi, Benjamin K.; Gladstone, Rupert; Golledge, Nicholas R.; Gregory, Jonathan M.; Greve, Ralf; Hattermann, Tore; Hoffman, Matthew J.; Humbert, Angelika; Huybrechts, Philippe; Jourdain, Nicolas C.; Kleiner, Thomas; Larour, Eric; Leguy, Gunter R.; Lowry, Daniel P.; Little, Chistopher M.; Morlighem, Mathieu; Pattyn, Frank; Pelle, Tyler; Price, Stephen F.; Quiquet, Aurélien; Reese, Ronja; Schlegel, Nicole-Jeanne; Shepherd, Andrew; Simon, Erika; Smith, Robin S.; Straneo, Fiammetta; Sun, Sainan; Trusel, Luke D.; Van Breedam, Jonas; van de Wal, Roderik S. W.; Winkelmann, Ricarda; Zhao, Chen; Zhang, Tong; Zwinger, Thomas
    Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to presentday conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6:1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica. © Author(s) 2020.
  • Item
    Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland
    (Wien [u.a.] : Springer, 2020) Piniewski, Mikołaj; Marcinkowski, Paweł; O’Keeffe, Joanna; Szcześniak, Mateusz; Nieróbca, Anna; Kozyra, Jerzy; Kundzewicz, Zbigniew W.; Okruszko, Tomasz
    Evidence shows that soil moisture (SM) anomalies (deficits or excesses) are the key factor affecting crop yield in rain-fed agriculture. Over last decades, Poland has faced several major droughts and at least one major soil moisture excess event leading to severe crop losses. This study aims to simulate the multi-annual variability of SM anomalies in Poland, using a process-based SWAT model and to assess the effect of climate change on future extreme SM conditions, potentially affecting crop yields in Poland. A crop-specific indicator based on simulated daily soil moisture content for the critical development stages of investigated crops (winter cereals, spring cereals, potato and maize) was designed, evaluated for past conditions against empirical crop-weather indices (CWIs), and applied for studying future climate conditions. The study used an ensemble of nine bias-corrected EURO-CORDEX projections for two future horizons: 2021–2050 and 2071–2100 under two Representative Concentration Pathways: RCP4.5 and 8.5. Historical simulation results showed that SWAT was capable of capturing major SM deficit and excess episodes for different crops in Poland. For spring cereals, potato and maize, despite a large model spread, projections generally showed increase of severity of soil moisture deficits, as well as of total area affected by them. Ensemble median fraction of land with extreme soil moisture deficits, occupied by each of these crops, is projected to at least double in size. The signals of change in soil moisture excesses for potato and maize were more dependent on selection of RCP and future horizon. © 2020, The Author(s).
  • Item
    The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6
    (Katlenburg-Lindau : Copernicus, 2020) Goelzer, Heiko; Nowicki, Sophie; Payne, Anthony; Larour, Eric; Seroussi, Helene; Lipscomb, William H.; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew; Simon, Erika; Agosta, Cécile; Alexander, Patrick; Aschwanden, Andy; Barthel, Alice; Calov, Reinhard; Chambers, Christopher; Choi, Youngmin; Cuzzone, Joshua; Dumas, Christophe; Edwards, Tamsin; Felikson, Denis; Fettweis, Xavier; Golledge, Nicholas R.; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Le clec'h, Sebastien; Lee, Victoria; Leguy, Gunter; Little, Chris; Lowry, Daniel P.; Morlighem, Mathieu; Nias, Isabel; Quiquet, Aurelien; Rückamp, Martin; Schlegel, Nicole-Jeanne; Slater, Donald A.; Smith, Robin S.; Straneo, Fiammetta; Tarasov, Lev; van de Wal, Roderik; van den Broeke, Michiel
    The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90-50 and 32-17mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. © Author(s) 2020.
  • Item
    How to Tailor My Process‐Based Hydrological Model? Dynamic Identifiability Analysis of Flexible Model Structures
    ([New York] : Wiley, 2020) Pilz, Tobias; Francke, Till; Baroni, Gabriele; Bronstert, Axel
    In the field of hydrological modeling, many alternative representations of natural processes exist. Choosing specific process formulations when building a hydrological model is therefore associated with a high degree of ambiguity and subjectivity. In addition, the numerical integration of the underlying differential equations and parametrization of model structures influence model performance. Identifiability analysis may provide guidance by constraining the a priori range of alternatives based on observations. In this work, a flexible simulation environment is used to build an ensemble of semidistributed, process-based hydrological model configurations with alternative process representations, numerical integration schemes, and model parametrizations in an integrated manner. The flexible simulation environment is coupled with an approach for dynamic identifiability analysis. The objective is to investigate the applicability of the framework to identify the most adequate model. While an optimal model configuration could not be clearly distinguished, interesting results were obtained when relating model identifiability with hydro-meteorological boundary conditions. For instance, we tested the Penman-Monteith and Shuttleworth & Wallace evapotranspiration models and found that the former performs better under wet and the latter under dry conditions. Parametrization of model structures plays a dominant role as it can compensate for inadequate process representations and poor numerical solvers. Therefore, it was found that numerical solvers of high order of accuracy do often, though not necessarily, lead to better model performance. The proposed coupled framework proved to be a straightforward diagnostic tool for model building and hypotheses testing and shows potential for more in-depth analysis of process implementations and catchment functioning.
  • Item
    Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity
    ([New York] : Wiley, 2020) Heinke, Jens; Lannerstad, Mats; Gerten, Dieter; Havlík, Petr; Herrero, Mario; Notenbaert, An Maria Omer; Hoff, Holger; Müller, Christoph
    Increasing population, change in consumption habits, and climate change will likely increase the competition for freshwater resources in the future. Exploring ways to improve water productivity especially in food and livestock systems is important for tackling the future water challenge. Here we combine detailed data on feed use and livestock production with Food and Agriculture Organization of the United Nations (FAO) statistics and process-based crop-water model simulations to comprehensively assess water use and water productivity in the global livestock sector. We estimate that, annually, 4,387 km3 of blue and green water is used for the production of livestock feed, equaling about 41% of total agricultural water use. Livestock water productivity (LWP; protein produced per m3 of water) differs by several orders of magnitude between livestock types, regions, and production systems, indicating a large potential for improvements. For pigs and broilers, we identify large opportunities to increase LWP by increasing both feed water productivity (FWP; feed produced per m3 of water) and feed use efficiency (FUE; protein produced per kg of feed) through better crop and livestock management. Even larger opportunities to increase FUE exist for ruminants, while the overall potential to increase their FWP is low. Substantial improvements of FUE can be achieved for ruminants by supplementation with feed crops, but the lower FWP of these feed crops compared to grazed biomass limits possible overall improvements of LWP. Therefore, LWP of ruminants, unlike for pigs and poultry, does not always benefit from a trend toward intensification, as this is often accompanied by increasing crop supplementation.
  • Item
    Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
    (Sapporo : IODP, 2020) Soreghan, Gerilyn S.; Beccaletto, Laurent; Benison, Kathleen C.; Bourquin, Sylvie; Feulner, Georg; Hamamura, Natsuko; Hamilton, Michael; Heavens, Nicholas G.; Hinnov, Linda; Huttenlocker, Adam; Looy, Cindy; Pfeifer, Lily S.; Pochat, Stephane; Sardar Abadi, Mehrdad; Zambito, James
    Chamberlin and Salisbury's assessment of the Permian a century ago captured the essence of the period: it is an interval of extremes yet one sufficiently recent to have affected a biosphere with near-modern complexity. The events of the Permian - the orogenic episodes, massive biospheric turnovers, both icehouse and greenhouse antitheses, and Mars-analog lithofacies - boggle the imagination and present us with great opportunities to explore Earth system behavior. The ICDP-funded workshops dubbed "Deep Dust," held in Oklahoma (USA) in March 2019 (67 participants from nine countries) and Paris (France) in January 2020 (33 participants from eight countries), focused on clarifying the scientific drivers and key sites for coring continuous sections of Permian continental (loess, lacustrine, and associated) strata that preserve high-resolution records. Combined, the two workshops hosted a total of 91 participants representing 14 countries, with broad expertise. Discussions at Deep Dust 1.0 (USA) focused on the primary research questions of paleoclimate, paleoenvironments, and paleoecology of icehouse collapse and the run-up to the Great Dying and both the modern and Permian deep microbial biosphere. Auxiliary science topics included tectonics, induced seismicity, geothermal energy, and planetary science. Deep Dust 1.0 also addressed site selection as well as scientific approaches, logistical challenges, and broader impacts and included a mid-workshop field trip to view the Permian of Oklahoma. Deep Dust 2.0 focused specifically on honing the European target. The Anadarko Basin (Oklahoma) and Paris Basin (France) represent the most promising initial targets to capture complete or near-complete stratigraphic coverage through continental successions that serve as reference points for western and eastern equatorial Pangaea. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Increasing compound warm spells and droughts in the Mediterranean Basin
    (Amsterdam [u.a.] : Elsevier, 2021) Vogel, Johannes; Paton, Eva; Aich, Valentin; Bronstert, Axel
    The co-occurrence of warm spells and droughts can lead to detrimental socio-economic and ecological impacts, largely surpassing the impacts of either warm spells or droughts alone. We quantify changes in the number of compound warm spells and droughts from 1979 to 2018 in the Mediterranean Basin using the ERA5 data set. We analyse two types of compound events: 1) warm season compound events, which are extreme in absolute terms in the warm season from May to October and 2) year-round deseasonalised compound events, which are extreme in relative terms respective to the time of the year. The number of compound events increases significantly and especially warm spells are increasing strongly – with an annual growth rates of 3.9 (3.5) % for warm season (deseasonalised) compound events and 4.6 (4.4) % for warm spells –, whereas for droughts the change is more ambiguous depending on the applied definition. Therefore, the rise in the number of compound events is primarily driven by temperature changes and not the lack of precipitation. The months July and August show the highest increases in warm season compound events, whereas the highest increases of deseasonalised compound events occur in spring and early summer. This increase in deseasonalised compound events can potentially have a significant impact on the functioning of Mediterranean ecosystems as this is the peak phase of ecosystem productivity and a vital phenophase.
  • Item
    Agent-based modeling to integrate elements from different disciplines for ambitious climate policy
    (Malden, MA : Wiley-Blackwell, 2022) Savin, Ivan; Creutzig, Felix; Filatova, Tatiana; Foramitti, Joël; Konc, Théo; Niamir, Leila; Safarzynska, Karolina; van den Bergh, Jeroen
    Ambitious climate mitigation policies face social and political resistance. One reason is that existing policies insufficiently capture the diversity of relevant insights from the social sciences about potential policy outcomes. We argue that agent-based models can serve as a powerful tool for integration of elements from different disciplines. Having such a common platform will enable a more complete assessment of climate policies, in terms of criteria like effectiveness, equity and public support. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models The Carbon Economy and Climate Mitigation > Policies, Instruments, Lifestyles, Behavior Policy and Governance > Multilevel and Transnational Climate Change Governance.
  • Item
    Future tree survival in European forests depends on understorey tree diversity
    (London : Nature Publishing Group, 2022) Billing, Maik; Thonicke, Kirsten; Sakschewski, Boris; Bloh, Werner von; Walz, Ariane
    Climate change heavily threatens forest ecosystems worldwide and there is urgent need to understand what controls tree survival and forests stability. There is evidence that biodiversity can enhance ecosystem stability (Loreau and de Mazancourt in Ecol Lett 16:106–115, 2013; McCann in Nature 405:228–233, 2000), however it remains largely unclear whether this also holds for climate change and what aspects of biodiversity might be most important. Here we apply machine learning to outputs of a flexible-trait Dynamic Global Vegetation Model to unravel the effects of enhanced functional tree trait diversity and its sub-components on climate-change resistance of temperate forests (http://www.pik-potsdam.de/~billing/video/Forest_Resistance_LPJmLFIT.mp4). We find that functional tree trait diversity enhances forest resistance. We explain this with 1. stronger complementarity effects (~ 25% importance) especially improving the survival of trees in the understorey of up to + 16.8% (± 1.6%) and 2. environmental and competitive filtering of trees better adapted to future climate (40–87% importance). We conclude that forests containing functionally diverse trees better resist and adapt to future conditions. In this context, we especially highlight the role of functionally diverse understorey trees as they provide the fundament for better survival of young trees and filtering of resistant tree individuals in the future.