Search Results

Now showing 1 - 10 of 20
  • Item
    Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland
    (Wien [u.a.] : Springer, 2020) Piniewski, Mikołaj; Marcinkowski, Paweł; O’Keeffe, Joanna; Szcześniak, Mateusz; Nieróbca, Anna; Kozyra, Jerzy; Kundzewicz, Zbigniew W.; Okruszko, Tomasz
    Evidence shows that soil moisture (SM) anomalies (deficits or excesses) are the key factor affecting crop yield in rain-fed agriculture. Over last decades, Poland has faced several major droughts and at least one major soil moisture excess event leading to severe crop losses. This study aims to simulate the multi-annual variability of SM anomalies in Poland, using a process-based SWAT model and to assess the effect of climate change on future extreme SM conditions, potentially affecting crop yields in Poland. A crop-specific indicator based on simulated daily soil moisture content for the critical development stages of investigated crops (winter cereals, spring cereals, potato and maize) was designed, evaluated for past conditions against empirical crop-weather indices (CWIs), and applied for studying future climate conditions. The study used an ensemble of nine bias-corrected EURO-CORDEX projections for two future horizons: 2021–2050 and 2071–2100 under two Representative Concentration Pathways: RCP4.5 and 8.5. Historical simulation results showed that SWAT was capable of capturing major SM deficit and excess episodes for different crops in Poland. For spring cereals, potato and maize, despite a large model spread, projections generally showed increase of severity of soil moisture deficits, as well as of total area affected by them. Ensemble median fraction of land with extreme soil moisture deficits, occupied by each of these crops, is projected to at least double in size. The signals of change in soil moisture excesses for potato and maize were more dependent on selection of RCP and future horizon. © 2020, The Author(s).
  • Item
    Global cotton production under climate change – Implications for yield and water consumption
    (Munich : EGU, 2021) Jans, Yvonne; von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph
    Being an extensively produced natural fiber on earth, cotton is of importance for economies. Although the plant is broadly adapted to varying environments, the growth of and irrigation water demand on cotton may be challenged by future climate change. To study the impacts of climate change on cotton productivity in different regions across the world and the irrigation water requirements related to it, we use the process-based, spatially detailed biosphere and hydrology model LPJmL (Lund Potsdam Jena managed land). We find our modeled cotton yield levels in good agreement with reported values and simulated water consumption of cotton production similar to published estimates. Following the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) protocol, we employ an ensemble of five general circulation models under four representative concentration pathways (RCPs) for the 2011 2099 period to simulate future cotton yields. We find that irrigated cotton production does not suffer from climate change if CO2 effects are considered, whereas rainfed production is more sensitive to varying climate conditions. Considering the overall effect of a changing climate and CO2 fertilization, cotton production on current cropland steadily increases for most of the RCPs. Starting from _ 65 million tonnes in 2010, cotton production for RCP4.5 and RCP6.0 equates to 83 and 92 million tonnes at the end of the century, respectively. Under RCP8.5, simulated global cotton production rises by more than 50% by 2099. Taking only climate change into account, projected cotton production considerably shrinks in most scenarios, by up to one-Third or 43 million tonnes under RCP8.5. The simulation of future virtual water content (VWC) of cotton grown under elevated CO2 results for all scenarios in less VWC compared to ambient CO2 conditions. Under RCP6.0 and RCP8.5, VWC is notably decreased by more than 2000m3 t1 in areas where cotton is produced under purely rainfed conditions. By 2040, the average global VWC for cotton declines in all scenarios from currently 3300 to 3000m3 t1, and reduction continues by up to 30% in 2100 under RCP8.5. While the VWC decreases by the CO2 effect, elevated temperature acts in the opposite direction. Ignoring beneficial CO2 effects, global VWC of cotton would increase for all RCPs except RCP2.6, reaching more than 5000m3 t1 by the end of the simulation period under RCP8.5. Given the economic relevance of cotton production, climate change poses an additional stress and deserves special attention. Changes in VWC and water demands for cotton production are of special importance, as cotton production is known for its intense water consumption. The implications of climate impacts on cotton production on the one hand and the impact of cotton production on water resources on the other hand illustrate the need to assess how future climate change may affect cotton production and its resource requirements. Our results should be regarded as optimistic, because of high uncertainty with respect to CO2 fertilization and the lack of implementing processes of boll abscission under heat stress. Still, the inclusion of cotton in LPJmL allows for various large-scale studies to assess impacts of climate change on hydrological factors and the implications for agricultural production and carbon sequestration. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    Integrated Climate-Change Assessment Scenarios and Carbon Dioxide Removal
    (Amsterdam : Elsevier, 2020) Schweizer, Vanessa J.; Ebi, Kristie L.; van Vuuren, Detlef P.; Jacoby, Henry D.; Riahi, Keywan; Strefler, Jessica; Takahashi, Kiyoshi; van Ruijven, Bas J.; Weyant, John P.
    To halt climate change, we must reduce anthropogenic CO2 emissions to net zero. Any emission sources must be balanced by natural or technological carbon sinks that facilitate CO2 removal (CDR) from the atmosphere. The integrated scenario framework represents how socio-economic trends and social values interact with biophysical systems in exploring future climate change and decarbonization pathways. This primer introduces the integrated scenario framework and its application to explore options for offsetting emissions with CDR. © 2020 The AuthorsTo halt climate change this century, we must reduce carbon dioxide (CO2) emissions from human activities to net zero. Any emission sources, such as in the energy or land-use sectors, must be balanced by natural or technological carbon sinks that facilitate CO2 removal (CDR) from the atmosphere. Projections of demand for large-scale CDR are based on an integrated scenario framework for emission scenarios composed of emission profiles as well as alternative socio-economic development trends and social values consistent with them. The framework, however, was developed years before systematic reviews of CDR entered the literature. This primer provides an overview of the purposes of scenarios in climate-change research and how they are used. It also introduces the integrated scenario framework and why it came about. CDR studies using the scenario framework, as well as its limitations, are discussed. Possible future developments for the scenario framework are highlighted, especially in relation to CDR. © 2020 The Authors
  • Item
    Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
    (Munich : EGU, 2021) Stenzel, Fabian; Gerten, Dieter; Hanasaki, Naota
    Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as a fuel source, as a negative emission technology, and for providing electricity. The associated freshwater abstractions for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater abstractions for bioenergy production and puts these estimates into the context of scenarios of other water-use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (some of which include several bioenergy-water-use scenarios) with reported values on global irrigation water abstractions for biomass plantations, suggesting water withdrawals in the range of 128.4 to 9000 km3 yr−1, which would come on top of (or compete with) agricultural, industrial, and domestic water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and calculate an inverse water-use efficiency (iwue), which facilitates comparison of the required freshwater amounts per produced biomass harvest. We conclude that due to the potentially high water demands and the tradeoffs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water abstractions, full disclosure of parameters and assumptions is crucial. A minimum set should include the complete water balances of bioenergy production systems (including partitioning of blue and green water), bioenergy crop species and associated water-use efficiencies, rainfed and irrigated bioenergy plantation locations (including total area and meteorological conditions), and total biomass harvest amounts. In the future, a model intercomparison project with standardized parameters and scenarios would be helpful.
  • Item
    Joint Trends in Flood Magnitudes and Spatial Extents Across Europe
    (Hoboken, NJ [u.a.] : Wiley, 2020) Kemter, Matthias; Merz, Bruno; Marwan, Norbert; Vorogushyn, Sergiy; Blöschl, Günter
    The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management. ©2020. The Authors.
  • Item
    Agent-based modeling to integrate elements from different disciplines for ambitious climate policy
    (Malden, MA : Wiley-Blackwell, 2022) Savin, Ivan; Creutzig, Felix; Filatova, Tatiana; Foramitti, Joël; Konc, Théo; Niamir, Leila; Safarzynska, Karolina; van den Bergh, Jeroen
    Ambitious climate mitigation policies face social and political resistance. One reason is that existing policies insufficiently capture the diversity of relevant insights from the social sciences about potential policy outcomes. We argue that agent-based models can serve as a powerful tool for integration of elements from different disciplines. Having such a common platform will enable a more complete assessment of climate policies, in terms of criteria like effectiveness, equity and public support. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models The Carbon Economy and Climate Mitigation > Policies, Instruments, Lifestyles, Behavior Policy and Governance > Multilevel and Transnational Climate Change Governance.
  • Item
    Pacific climate reflected in Waipuna Cave drip water hydrochemistry
    (Munich : EGU, 2020) Nava-Fernandez, Cinthya; Hartland, Adam; Gázquez, Fernando; Kwiecien, Ola; Marwan, Norbert; Fox, Bethany; Hellstrom, John; Pearson, Andrew; Ward, Brittany; French, Amanda; Hodell, David A.; Immenhauser, Adrian; Breitenbach, Sebastian F.M.
    Cave microclimate and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave-monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the Southern Westerlies and the El Niño-Southern Oscillation (ENSO). This study aims to characterise the response of the Waipuna Cave hydrological system to atmospheric circulation dynamics in the southwestern Pacific region in order to assure the quality of ongoing palaeo-environmental reconstructions from this cave. Drip water from 10 drip sites was collected at roughly monthly intervals for a period of ca. 3 years for isotopic (d18O, dD, d-excess parameter, d17O, and 17Oexcess) and elemental (Mg=Ca and Sr=Ca) analysis. The monitoring included spot measurements of drip rates and cave air CO2 concentration. Cave air temperature and drip rates were also continuously recorded by automatic loggers. These datasets were compared to surface air temperature, rainfall, and potential evaporation from nearby meteorological stations to test the degree of signal transfer and expression of surface environmental conditions in Waipuna Cave hydrochemistry. Based on the drip response dynamics to rainfall and other characteristics, we identified three types of discharge associated with hydrological routing in Waipuna Cave: (i) type 1-diffuse flow, (ii) type 2-fracture flow, and (iii) type 3-combined flow. Drip water isotopes do not reflect seasonal variability but show higher values during severe drought. Drip water d18O values are characterised by small variability and reflect the mean isotopic signature of precipitation, testifying to rapid and thorough homogenisation in the epikarst. Mg=Ca and Sr=Ca ratios in drip waters are predominantly controlled by prior calcite precipitation (PCP). Prior calcite precipitation is strongest during austral summer (December-February), reflecting drier conditions and a lack of effec tive infiltration, and is weakest during the wet austral winter (July-September). The Sr=Ca ratio is particularly sensitive to ENSO conditions due to the interplay of congruent or incongruent host rock dissolution, which manifests itself in lower Sr=Ca in above-average warmer and wetter (La Niña-like) conditions. Our microclimatic observations at Waipuna Cave provide a valuable baseline for the rigorous interpretation of speleothem proxy records aiming at reconstructing the past expression of Pacific climate modes. © 2020 Author(s).
  • Item
    The role of atmospheric rivers in the distribution of heavy precipitation events over North America
    (Munich : EGU, 2023) Vallejo-Bernal, Sara M.; Wolf, Frederik; Boers, Niklas; Traxl, Dominik; Marwan, Norbert; Kurths, Jürgen
    Atmospheric rivers (ARs) are filaments of extensive water vapor transport in the lower troposphere that play a crucial role in the distribution of freshwater but can also cause natural and economic damage by facilitating heavy precipitation. Here, we investigate the large-scale spatiotemporal synchronization patterns of heavy precipitation events (HPEs) over the western coast and the continental regions of North America (NA), during the period from 1979 to 2018. In particular, we use event synchronization and a complex network approach incorporating varying delays to examine the temporal evolution of spatial patterns of HPEs in the aftermath of land-falling ARs. For that, we employ the SIO-R1 catalog of ARs that landfall on the western coast of NA, ranked in terms of intensity and persistence on an AR-strength scale which varies from level AR1 to AR5, along with daily precipitation estimates from ERA5 with a 0.25'spatial resolution. Our analysis reveals a cascade of synchronized HPEs, triggered by ARs of level AR3 or higher. On the first 3d after an AR makes landfall, HPEs mostly occur and synchronize along the western coast of NA. In the subsequent days, moisture can be transported to central and eastern Canada and cause synchronized but delayed HPEs there. Furthermore, we confirm the robustness of our findings with an additional AR catalog based on a different AR detection method. Finally, analyzing the anomalies of integrated water vapor transport, geopotential height, upper-level meridional wind, and precipitation, we find atmospheric circulation patterns that are consistent with the spatiotemporal evolution of the synchronized HPEs. Revealing the role of ARs in the precipitation patterns over NA will lead to a better understanding of inland HPEs and the effects that changing climate dynamics will have on precipitation occurrence and consequent impacts in the context of a warming atmosphere.
  • Item
    A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
    (Katlenburg-Lindau : Copernicus, 2020) Laj, Paolo; Bigi, Alessandro; Rose, Clémence; Andrews, Elisabeth; Lund Myhre, Cathrine; Collaud Coen, Martine; Lin, Yong; Wiedensohler, Alfred; Schulz, Michael; Ogren, John A.; Fiebig, Markus; Prenni, Anthony; Reisen, Fabienne; Romano, Salvatore; Sellegri, Karine; Sharma, Sangeeta; Schauer, Gerhard; Sheridan, Patrick; Sherman, James Patrick; Schütze, Maik; Schwerin, Andreas; Tuch, Thomas; Sohmer, Ralf; Sorribas, Mar; Steinbacher, Martin; Sun, Junying; Titos, Gloria; Toczko, Barbara; Tulet, Pierre; Tunved, Peter; Vakkari, Ville; Velarde, Fernando; Velasquez, Patricio; Villani, Paolo; Vratolis, Sterios; Wang, Sheng-Hsiang; Weinhold, Kay; Gliß, Jonas; Weller, Rolf; Yela, Margarita; Yus-Diez, Jesus; Zdimal, Vladimir; Zieger, Paul; Zikova, Nadezda; Mortier, Augustin; Pandolfi, Marco; Petäja, Tuukka; Kim, Sang-Woo; Aas, Wenche; Putaud, Jean-Philippe; Mayol-Bracero, Olga; Keywood, Melita; Labrador, Lorenzo; Aalto, Pasi; Ahlberg, Erik; Alados Arboledas, Lucas; Alastuey, Andrés; Andrade, Marcos; Artíñano, Begoña; Ausmeel, Stina; Arsov, Todor; Asmi, Eija; Backman, John; Baltensperger, Urs; Bastian, Susanne; Bath, Olaf; Beukes, Johan Paul; Brem, Benjamin T.; Bukowiecki, Nicolas; Conil, Sébastien; Couret, Cedric; Day, Derek; Dayantolis, Wan; Degorska, Anna; Eleftheriadis, Konstantinos; Fetfatzis, Prodromos; Favez, Olivier; Flentje, Harald; Gini, Maria I.; Gregorič, Asta; Gysel-Beer, Martin; Hallar, A. Gannet; Hand, Jenny; Hoffer, Andras; Hueglin, Christoph; Hooda, Rakesh K.; Hyvärinen, Antti; Kalapov, Ivo; Kalivitis, Nikos; Kasper-Giebl, Anne; Kim, Jeong Eun; Kouvarakis, Giorgos; Kranjc, Irena; Krejci, Radovan; Kulmala, Markku; Labuschagne, Casper; Lee, Hae-Jung; Lihavainen, Heikki; Lin, Neng-Huei; Löschau, Gunter; Luoma, Krista; Marinoni, Angela; Martins Dos Santos, Sebastiao; Meinhardt, Frank; Merkel, Maik; Metzger, Jean-Marc; Mihalopoulos, Nikolaos; Nguyen, Nhat Anh; Ondracek, Jakub; Pérez, Noemi; Perrone, Maria Rita; Petit, Jean-Eudes; Picard, David; Pichon, Jean-Marc; Pont, Veronique; Prats, Natalia
    Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  • Item
    Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) De Oliveira Garcia, Wagner; Amann, Thorben; Hartmann, Jens; Karstens, Kristine; Popp, Alexander; Boysen, Lena R.; Smith, Pete; Goll, Daniel
    Limiting global mean temperature changes to well below 2 °C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation-reforestation and naturally growing forests (AR) and bioenergy grasses (BG) that are deficient in phosphorus (P), besides the impacts on soil hydrology. Using stoichiometric ratios and biomass estimates from two established vegetation models, we calculated the nutrient demand of AR and BG. Insufficient geogenic P supply limits C storage in biomass. For a mean P demand by AR and a lowgeogenic-P-supply scenario, AR would sequester 119 Gt C in biomass; for a high-geogenic-P-supply and low-AR-Pdemand scenario, 187 Gt C would be sequestered in biomass; and for a low geogenic P supply and high AR P demand, only 92 GtC would be accumulated by biomass. An average amount of ∼ 150 Gt basalt powder applied for EW would be needed to close global P gaps and completely sequester projected amounts of 190 Gt C during the years 2006-2099 for the mean AR P demand scenario (2-362 Gt basalt powder for the low-AR-P-demand and for the high-AR-P-demand scenarios would be necessary, respectively). The average potential of carbon sequestration by EW until 2099 is ∼ 12 GtC (∼ 0:2-∼ 27 Gt C) for the specified scenarios (excluding additional carbon sequestration via alkalinity production). For BG, 8 kg basaltm2 a1 might, on average, replenish the exported potassium (K) and P by harvest. Using pedotransfer functions, we show that the impacts of basalt powder application on soil hydraulic conductivity and plant-Available water, to close predicted P gaps, would depend on basalt and soil texture, but in general the impacts are marginal. We show that EW could potentially close the projected P gaps of an AR scenario and nutrients exported by BG harvest, which would decrease or replace the use of industrial fertilizers. Besides that, EW ameliorates the soil's capacity to retain nutrients and soil pH and replenish soil nutrient pools. Lastly, EW application could improve plant-Available-water capacity depending on deployed amounts of rock powder - adding a new dimension to the coupling of land-based biomass NETs with EW. © 2020 Royal Society of Chemistry. All rights reserved.