Search Results

Now showing 1 - 10 of 10
  • Item
    Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    (Weinheim : Wiley-VCH, 2022) Wang, Lei; Torkamanzadeh, Mohammad; Majed, Ahmad; Zhang, Yuan; Wang, Qingsong; Breitung, Ben; Feng, Guang; Naguib, Michael; Presser, Volker
    Electrochemical ion separation is a promising technology to recover valuable ionic species from water. Pseudocapacitive materials, especially 2D materials, are up-and-coming electrodes for electrochemical ion separation. For implementation, it is essential to understand the interplay of the intrinsic preference of a specific ion (by charge/size), kinetic ion preference (by mobility), and crystal structure changes. Ti3C2Tz MXene is chosen here to investigate its selective behavior toward alkali and alkaline earth cations. Utilizing an online inductively coupled plasma system, it is found that Ti3C2Tz shows a time-dependent selectivity feature. In the early stage of charging (up to about 50 min), K+ is preferred, while ultimately Ca2+ and Mg2+ uptake dominate; this unique phenomenon is related to dehydration energy barriers and the ion exchange effect between divalent and monovalent cations. Given the wide variety of MXenes, this work opens the door to a new avenue where selective ion-separation with MXene can be further engineered and optimized.
  • Item
    Wet-Spun PEDOT/CNT Composite Hollow Fibers as Flexible Electrodes for H2O2 Production
    (Weinheim : Wiley-VCH, 2021) Cui, Qing; Bell, Daniel Josef; Wang, Siqi; Mohseni, Mojtaba; Felder, Daniel; Lölsberg, Jonas; Wessling, Matthias
    The electrochemical synthesis of hydrogen peroxide (H2O2) using the oxygen reduction reaction (ORR) requires highly catalytic active, selective, and stable electrode materials to realize a green and efficient process. The present publication shows for the first time the application of a facile one-step bottom-up wet-spinning approach for the continuous fabrication of stable and flexible tubular poly(3,4-ethylene dioxythiophene) (PEDOT : PSS) and PEDOT : PSS/carbon nanotube (CNT) hollow fibers. Additionally, electrochemical experiments reveal the catalytic activity of acid-treated PEDOT : PSS and its composites in the ORR forming hydrogen peroxide for the first time. Under optimized conditions, the composite electrodes with 40 wt % CNT loading could achieve a high production rate of 0.01 mg/min/cm2 and a current efficiency of up to 54 %. In addition to the high production rate, the composite hollow fiber has proven its long-term stability with 95 % current retention after 20 h of hydrogen peroxide production. © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH
  • Item
    Best practice for electrochemical water desalination data generation and analysis
    (Maryland Heights, MO : Cell Press, 2023) Torkamanzadeh, Mohammad; Kök, Cansu; Burger, Peter Rolf; Ren, Panyu; Zhang, Yuan; Lee, Juhan; Kim, Choonsoo; Presser, Volker
    Electrochemical desalination shows promise for ion-selective, energy-efficient water desalination. This work reviews performance metrics commonly used for electrochemical desalination. We provide a step-by-step guide on acquiring, processing, and calculating raw desalination data, emphasizing informative and reliable figures of merit. A typical experiment uses calibrated conductivity probes to relate measured conductivity to concentration. Using a standard electrochemical desalination cell with activated carbon electrodes, we demonstrate the calculation of desalination capacity, charge efficiency, energy consumption, and ion selectivity metrics. We address potential pitfalls in performance metric calculations, including leakage current (charge) considerations and aging of conductivity probes, which can lead to inaccurate results. The relationships between pH, temperature, and conductivity are explored, highlighting their influence on final concentrations. Finally, we provide a checklist for calculating performance metrics and planning electrochemical desalination tests to ensure accuracy and reliability. Additionally, we offer simplified spreadsheet tools to aid data processing, system design, estimations, and upscaling.
  • Item
    Titanium-Based Static Mixer Electrodes to Improve the Current Density of Slurry Electrodes
    (Weinheim : Wiley-VCH, 2023) Percin, Korcan; Hereijgers, Jonas; Mulandi, Nicolas; Breugelmans, Tom; Wessling, Matthias
    Complex geometries for electrodes are a great challenge in electrochemical applications. Slurry electrodes have been one example, which use complex flow distributors to improve the charge transfer between the current collector and the slurry particles. Here we use titanium-based flow distributors produced by indirect 3D-printing to improve further the electron transfer from highly conductive flow distributors to the slurry particles for a vanadium redox flow application. The titanium static mixers are directly coated with graphite to increase the activity for vanadium redox reactions. Increasing layers of graphite have shown an optimum for the positive and negative electrolytes. The application of heat treatment on the electrodes improves the anodic and cathodic current peaks drastically. Testing the highly conductive static mixers in a self-made redox flow cell results in 110 mA cm−2 discharge polarization.
  • Item
    Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene
    (Weinheim : Wiley-VCH, 2021) Winter, Tamara; Haider, Wasim; Schießer, Alexander; Presser, Volker; Gallei, Markus; Schäfer, André
    The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol–1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented
  • Item
    Modeling Photodetection at the Graphene/Ag2S Interface
    (Weinheim : Wiley-VCH, 2021) Spirito, Davide; Martín-García, Beatriz; Mišeikis, Vaidotas; Coletti, Camilla; Bonaccorso, Francesco; Krahne, Roman
    Mixed-dimensional systems host interesting phenomena that involve electron and ion transport along or across the interface, with promising applications in optoelectronic and electrochemical devices. Herein, a heterosystem consisting of a graphene monolayer with a colloidal Ag2S nanocrystal film atop, in which both ions and electrons are involved in photoelectrical effects, is studied. An investigation of the transport at the interface in different configurations by using a phototransistor configuration with graphene as a charge-transport layer and semiconductor nanocrystals as a light-sensitive layer is performed. The key feature of charge transfer is investigated as a function of gate voltage, frequency, and incident light power. A simple analytical model of the photoresponse is developed, to gain information on the device operation, revealing that the nanocrystals transfer electrons to graphene in the dark, but the opposite process occurs upon illumination. A frequency-dependence analysis suggests a fractal interface between the two materials. This interface can be modified using solid-state electrochemical reactions, leading to the formation of metallic Ag particles, which affect the graphene properties by additional doping, while keeping the photoresponse. Overall, these results provide analytical tools and guidelines for the evaluation of coupled electron/ion transport in hybrid systems.
  • Item
    Real-Time Monitoring of Blood Parameters in the Intensive Care Unit: State-of-the-Art and Perspectives
    (Basel : MDPI, 2022) Bockholt, Rebecca; Paschke, Shaleen; Heubner, Lars; Ibarlucea, Bergoi; Laupp, Alexander; Janićijević, Željko; Klinghammer, Stephanie; Balakin, Sascha; Maitz, Manfred F.; Werner, Carsten; Cuniberti, Gianaurelio; Baraban, Larysa; Spieth, Peter Markus
    The number of patients in intensive care units has increased over the past years. Critically ill patients are treated with a real time support of the instruments that offer monitoring of relevant blood parameters. These parameters include blood gases, lactate, and glucose, as well as pH and tem-perature. Considering the COVID-19 pandemic, continuous management of dynamic deteriorating parameters in patients is more relevant than ever before. This narrative review aims to summarize the currently available literature regarding real-time monitoring of blood parameters in intensive care. Both, invasive and non-invasive methods are described in detail and discussed in terms of general advantages and disadvantages particularly in context of their use in different medical fields but especially in critical care. The objective is to explicate both, well-known and frequently used as well as relatively unknown devices. Furtehrmore, potential future direction in research and development of realtime sensor systems are discussed. Therefore, the discussion section provides a brief description of current developments in biosensing with special emphasis on their technical implementation. In connection with these developments, the authors focus on different electrochemical approaches to invasive and non-invasive measurements in vivo.
  • Item
    Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Nasri, Zahra; Ahmadi, Mohsen; Striesow, Johanna; Ravandeh, Mehdi; von Woedtke, Thomas; Wende, Kristian
    As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
  • Item
    Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction
    ([London] : Nature Publishing Group UK, 2020) He, Yongmin; Tang, Pengyi; Hu, Zhili; He, Qiyuan; Zhu, Chao; Wang, Luqing; Zeng, Qingsheng; Golani, Prafful; Gao, Guanhui; Fu, Wei; Huang, Zhiqi; Gao, Caitian; Xia, Juan; Wang, Xingli; Wang, Xuewen; Zhu, Chao; Ramasse, Quentin M.; Zhang, Ao; An, Boxing; Zhang, Yongzhe; Martí-Sánchez, Sara; Morante, Joan Ramon; Wang, Liang; Tay, Beng Kang; Yakobson, Boris I.; Trampert, Achim; Zhang, Hua; Wu, Minghong; Wang, Qi Jie; Arbiol, Jordi; Liu, Zheng
    Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs.
  • Item
    How to speed up ion transport in nanopores
    ([London] : Nature Publishing Group UK, 2020) Breitsprecher, Konrad; Janssen, Mathijs; Srimuk, Pattarachai; Mehdi, B. Layla; Presser, Volker; Holm, Christian; Kondrat, Svyatoslav
    Electrolyte-filled subnanometre pores exhibit exciting physics and play an increasingly important role in science and technology. In supercapacitors, for instance, ultranarrow pores provide excellent capacitive characteristics. However, ions experience difficulties in entering and leaving such pores, which slows down charging and discharging processes. In an earlier work we showed for a simple model that a slow voltage sweep charges ultranarrow pores quicker than an abrupt voltage step. A slowly applied voltage avoids ionic clogging and co-ion trapping—a problem known to occur when the applied potential is varied too quickly—causing sluggish dynamics. Herein, we verify this finding experimentally. Guided by theoretical considerations, we also develop a non-linear voltage sweep and demonstrate, with molecular dynamics simulations, that it can charge a nanopore even faster than the corresponding optimized linear sweep. For discharging we find, with simulations and in experiments, that if we reverse the applied potential and then sweep it to zero, the pores lose their charge much quicker than they do for a short-circuited discharge over their internal resistance. Our findings open up opportunities to greatly accelerate charging and discharging of subnanometre pores without compromising the capacitive characteristics, improving their importance for energy storage, capacitive deionization, and electrochemical heat harvesting.