Search Results

Now showing 1 - 10 of 312
  • Item
    An asymptotic analysis for a generalized Cahn--Hilliard system with fractional operators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In a recent paper the same authors have proved existence, uniqueness and regularity results for a class of viscous and nonviscous Cahn--Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers in the spectral sense of general linear operators, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space of square-integrable functions on a bounded and smooth three-dimensional domain, and have compact resolvents. Here, for the case of the viscous system, we analyze the asymptotic behavior of the solution as the fractional power coefficient of the second operator tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of the second operator appears.
  • Item
    Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) König, Wolfgang; Perkowski, Nicolas; van Zuijlen, Willem
    We consider the parabolic Anderson model (PAM) in ℝ ² with a Gaussian (space) white-noise potential. We prove that the almost-sure large-time asymptotic behaviour of the total mass at time t is given asymptotically by Χ t log t, with the deterministic constant Χ identified in terms of a variational formula. In earlier work of one of the authors this constant was used to describe the asymptotic behaviour principal Dirichlet of the eigenvalue the Anderson operator on the t by t box around zero asymptotically by Χ log t.
  • Item
    EDP-convergence for a linear reaction-diffusion system with fast reversible reaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Stephan, Artur
    We perform a fast-reaction limit for a linear reaction-diffusion system consisting of two diffusion equations coupled by a linear reaction. We understand the linear reaction-diffusion system as a gradient flow of the free energy in the space of probability measures equipped with a geometric structure, which contains the Wasserstein metric for the diffusion part and cosh-type functions for the reaction part. The fast-reaction limit is done on the level of the gradient structure by proving EDP-convergence with tilting. The limit gradient system induces a diffusion system with Lagrange multipliers on the linear slow-manifold. Moreover, the limit gradient system can be equivalently described by a coarse-grained gradient system, which induces a diffusion equation with a mixed diffusion constant for the coarse-grained slow variable.
  • Item
    Malware propagation in urban D2D networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Hinsen, Alexander; Jahnel, Benedikt; Cali, Eli; Wary, Jean-Philippe
    We introduce and analyze models for the propagation of malware in pure D2D networks given via stationary Cox--Gilbert graphs. Here, the devices form a Poisson point process with random intensity measure λ, Λ where Λ is stationary and given, for example, by the edge-length measure of a realization of a Poisson--Voronoi tessellation that represents an urban street system. We assume that, at initial time, a typical device at the center of the network carries a malware and starts to infect neighboring devices after random waiting times. Here we focus on Markovian models, where the waiting times are exponential random variables, and non-Markovian models, where the waiting times feature strictly positive minimal and finite maximal waiting times. We present numerical results for the speed of propagation depending on the system parameters. In a second step, we introduce and analyze a counter measure for the malware propagation given by special devices called white knights, which have the ability, once attacked, to eliminate the malware from infected devices and turn them into white knights. Based on simulations, we isolate parameter regimes in which the malware survives or is eliminated, both in the Markovian and non-Markovian setting.
  • Item
    Mitgedacht: Roboter in meinem Leben - und jetzt? : Dokumentation eines Learning Circles zu Robotik und KI
    (Hamburg : Hamburg Open Online University, 2021) Bauer, Silvia; Dürkop, Axel; Fahrenkrog, Gabriele; Köhncke, Martin; Kranz, Sarah; Politt, Sarah
    Das Skript dokumentiert einen sechswöchigen Learning Circle zu Robotik und Künstlicher Intelligenz. Die Informationen wurden von den genannten Autor:innen kollaborativ zusammengetragen und stehen als offene Bildungsresource (OER) anderen Interessierten zur Verfügung.
  • Item
    Multicomponent incompressible fluids -- An asymptotic study
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Bothe, Dieter; Dreyer, Wolfgang; Druet, Pierre-Étienne
    This paper investigates the asymptotic behavior of the Helmholtz free energy of mixtures at small compressibility. We start from a general representation for the local free energy that is valid in stable subregions of the phase diagram. On the basis of this representation we classify the admissible data to construct a thermodynamically consistent constitutive model. We then analyze the incompressible limit, where the molar volume becomes independent of pressure. Here we are confronted with two problems: (i) Our study shows that the physical system at hand cannot remain incompressible for arbitrary large deviations from a reference pressure unless its volume is linear in the composition. (ii) As a consequence of the 2nd law of thermodynamics, the incompressible limit implies that the molar volume becomes independent of temperature as well. Most applications, however, reveal the non-appropriateness of this property. According to our mathematical treatment, the free energy as a function of temperature and partial masses tends to a limit in the sense of epi-- or Gamma--convergence. In the context of the first problem, we study the mixing of two fluids to compare the linearity with experimental observations. The second problem will be treated by considering the asymptotic behavior of both a general inequality relating thermal expansion and compressibility and a PDE-system relying on the equations of balance for partial masses, momentum and the internal energy.
  • Item
    The parabolic Anderson model on a Galton--Watson tree
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) den Hollander, Frank; König, Wolfgang; Soares dos Santos, Renato
    We study the long-time asymptotics of the total mass of the solution to the parabolic Anderson model ( PAM) on a supercritical Galton-Watson random tree with bounded degrees. We identify the second-order contribution to this asymptotics in terms of a variational formula that gives information about the local structure of the region where the solution is concentrated. The analysis behind this formula suggests that, under mild conditions on the model parameters, concentration takes place on a tree with minimal degree. Our approach can be applied to finite locally tree-like random graphs, in a coupled limit where both time and graph size tend to infinity. As an example, we consider the configuration model or, more precisely, the uniform simple random graph with a prescribed degree sequence.
  • Item
    On quenched homogenization of long-range random conductance models on stationary ergodic point processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Heida, Martin
    We study the homogenization limit on bounded domains for the long-range random conductance model on stationary ergodic point processes on the integer grid. We assume that the conductance between neares neighbors in the point process are always positive and satisfy certain weight conditions. For our proof we use long-range two-scale convergence as well as methods from numerical analysis of finite volume methods.
  • Item
    Constrained exact boundary controllability of a semilinear model for pipeline gas flow
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Gugat, Martin; Habermann, Jens; Hintermüller, Michael; Huber, Olivier
    While the quasilinear isothermal Euler equations are an excellent model for gas pipeline flow, the operation of the pipeline flow with high pressure and small Mach numbers allows us to obtain approximate solutions by a simpler semilinear model. We provide a derivation of the semilinear model that shows that the semilinear model is valid for sufficiently low Mach numbers and sufficiently high pressures. We prove an existence result for continuous solutions of the semilinear model that takes into account lower and upper bounds for the pressure and an upper bound for the magnitude of the Mach number of the gas flow. These state constraints are important both in the operation of gas pipelines and to guarantee that the solution remains in the set where the model is physically valid. We show the constrained exact boundary controllability of the system with the same pressure and Mach number constraints.
  • Item
    Model hierarchies and higher-order discretisation of time-dependent thin-film free boundary problems with dynamic contact angle
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Peschka, Dirk; Heltai, Luca
    We present a mathematical and numerical framework for the physical problem of thin-film fluid flows over planar surfaces including dynamic contact angles. In particular, we provide algorithmic details and an implementation of higher-order spatial and temporal discretisation of the underlying free boundary problem using the finite element method. The corresponding partial differential equation is based on a thermodynamic consistent energetic variational formulation of the problem using the free energy and viscous dissipation in the bulk, on the surface, and at the moving contact line. Model hierarchies for limits of strong and weak contact line dissipation are established, implemented and studied. We analyze the performance of the numerical algorithm and investigate the impact of the dynamic contact angle on the evolution of two benchmark problems: gravity-driven sliding droplets and the instability of a ridge.